🎉Community Raffle - Win $25

An exclusive raffle opportunity for active members like you! Complete your profile, answer questions and get your first accepted badge to enter the raffle.
Join and Win

Target class Logistic regression

User: "User141505"
New Altair Community Member
Updated by Jocelyn
Hi.
how do i set the target class  for the logistic regression? I do not mean the label attribute for the prediction, but which one of the two possible values in the label attribute is considered as "Positive value" as indicated in the confusion matrix.
It could help me not to get confused when evaluating evaluate sensitivity and specificity.

Thanks

Find more posts tagged with

Sort by:
1 - 1 of 11
    User: "JEdward"
    New Altair Community Member
    Accepted Answer
    You can use the Operator "Set Positive" to set the positive value. 

    Here's a sample process:



    <?xml version="1.0" encoding="UTF-8"?><process version="9.10.001"><br>  <context><br>    <input/><br>    <output/><br>    <macros/><br>  </context><br>  <operator activated="true" class="process" compatibility="9.10.001" expanded="true" name="Process" origin="GENERATED_TUTORIAL"><br>    <parameter key="logverbosity" value="init"/><br>    <parameter key="random_seed" value="2001"/><br>    <parameter key="send_mail" value="never"/><br>    <parameter key="notification_email" value=""/><br>    <parameter key="process_duration_for_mail" value="30"/><br>    <parameter key="encoding" value="SYSTEM"/><br>    <process expanded="true"><br>      <operator activated="true" class="retrieve" compatibility="9.10.001" expanded="true" height="68" name="Retrieve Golf" origin="GENERATED_TUTORIAL" width="90" x="112" y="34"><br>        <parameter key="repository_entry" value="//Samples/data/Golf"/><br>      </operator><br>      <operator activated="true" class="multiply" compatibility="9.10.001" expanded="true" height="103" name="Multiply" width="90" x="246" y="34"/><br>      <operator activated="true" class="h2o:logistic_regression" compatibility="9.10.001" expanded="true" height="124" name="Logistic Regression" width="90" x="380" y="34"><br>        <parameter key="solver" value="AUTO"/><br>        <parameter key="reproducible" value="false"/><br>        <parameter key="maximum_number_of_threads" value="4"/><br>        <parameter key="use_regularization" value="false"/><br>        <parameter key="lambda_search" value="false"/><br>        <parameter key="number_of_lambdas" value="0"/><br>        <parameter key="lambda_min_ratio" value="0.0"/><br>        <parameter key="early_stopping" value="true"/><br>        <parameter key="stopping_rounds" value="3"/><br>        <parameter key="stopping_tolerance" value="0.001"/><br>        <parameter key="standardize" value="true"/><br>        <parameter key="non-negative_coefficients" value="false"/><br>        <parameter key="add_intercept" value="true"/><br>        <parameter key="compute_p-values" value="true"/><br>        <parameter key="remove_collinear_columns" value="true"/><br>        <parameter key="missing_values_handling" value="MeanImputation"/><br>        <parameter key="max_iterations" value="0"/><br>        <parameter key="max_runtime_seconds" value="0"/><br>      </operator><br>      <operator activated="true" class="blending:set_positive_value" compatibility="9.10.001" expanded="true" height="82" name="Set Positive Value" origin="GENERATED_TUTORIAL" width="90" x="380" y="238"><br>        <parameter key="positive_values" value="Play␝no"/><br>      </operator><br>      <operator activated="true" class="apply_model" compatibility="9.10.001" expanded="true" height="82" name="Apply Model" width="90" x="514" y="34"><br>        <list key="application_parameters"/><br>        <parameter key="create_view" value="false"/><br>      </operator><br>      <operator activated="true" class="performance" compatibility="9.10.001" expanded="true" height="82" name="Performance" width="90" x="648" y="34"><br>        <parameter key="use_example_weights" value="true"/><br>      </operator><br>      <operator activated="true" class="h2o:logistic_regression" compatibility="9.10.001" expanded="true" height="124" name="Logistic Regression (2)" width="90" x="514" y="238"><br>        <parameter key="solver" value="AUTO"/><br>        <parameter key="reproducible" value="false"/><br>        <parameter key="maximum_number_of_threads" value="4"/><br>        <parameter key="use_regularization" value="false"/><br>        <parameter key="lambda_search" value="false"/><br>        <parameter key="number_of_lambdas" value="0"/><br>        <parameter key="lambda_min_ratio" value="0.0"/><br>        <parameter key="early_stopping" value="true"/><br>        <parameter key="stopping_rounds" value="3"/><br>        <parameter key="stopping_tolerance" value="0.001"/><br>        <parameter key="standardize" value="true"/><br>        <parameter key="non-negative_coefficients" value="false"/><br>        <parameter key="add_intercept" value="true"/><br>        <parameter key="compute_p-values" value="true"/><br>        <parameter key="remove_collinear_columns" value="true"/><br>        <parameter key="missing_values_handling" value="MeanImputation"/><br>        <parameter key="max_iterations" value="0"/><br>        <parameter key="max_runtime_seconds" value="0"/><br>      </operator><br>      <operator activated="true" class="apply_model" compatibility="9.10.001" expanded="true" height="82" name="Apply Model (2)" width="90" x="648" y="238"><br>        <list key="application_parameters"/><br>        <parameter key="create_view" value="false"/><br>      </operator><br>      <operator activated="true" class="performance" compatibility="9.10.001" expanded="true" height="82" name="Performance (Set Pos)" width="90" x="782" y="238"><br>        <parameter key="use_example_weights" value="true"/><br>      </operator><br>      <connect from_op="Retrieve Golf" from_port="output" to_op="Multiply" to_port="input"/><br>      <connect from_op="Multiply" from_port="output 1" to_op="Logistic Regression" to_port="training set"/><br>      <connect from_op="Multiply" from_port="output 2" to_op="Set Positive Value" to_port="example set input"/><br>      <connect from_op="Logistic Regression" from_port="model" to_op="Apply Model" to_port="model"/><br>      <connect from_op="Logistic Regression" from_port="exampleSet" to_op="Apply Model" to_port="unlabelled data"/><br>      <connect from_op="Set Positive Value" from_port="example set output" to_op="Logistic Regression (2)" to_port="training set"/><br>      <connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/><br>      <connect from_op="Performance" from_port="performance" to_port="result 1"/><br>      <connect from_op="Logistic Regression (2)" from_port="model" to_op="Apply Model (2)" to_port="model"/><br>      <connect from_op="Logistic Regression (2)" from_port="exampleSet" to_op="Apply Model (2)" to_port="unlabelled data"/><br>      <connect from_op="Apply Model (2)" from_port="labelled data" to_op="Performance (Set Pos)" to_port="labelled data"/><br>      <connect from_op="Performance (Set Pos)" from_port="performance" to_port="result 2"/><br>      <portSpacing port="source_input 1" spacing="0"/><br>      <portSpacing port="sink_result 1" spacing="0"/><br>      <portSpacing port="sink_result 2" spacing="0"/><br>      <portSpacing port="sink_result 3" spacing="0"/><br>    </process><br>  </operator><br></process><br><br>