Extract topics from data (LDA)

Lottew44
Lottew44 New Altair Community Member
edited November 5 in Community Q&A
Hi

Via Process documents from files (subprocess: transform cases > tokenize > filter stopwords > filter tokens by length) I have created an example set based on 6 documents where I want to extract the topics from via the Extract topics from Data (DLA) operator and everything works just fine but I still have words of less than 4 tokens emerging in the wordlist that belong to the topics, as well as stopwords (the, and...). Does anyone knows what else I can do to solve this? I already used the filter stopwords and filter tokens by length (4 - 25) operator in the first step but I'm apparently doing something wrong since I still have those meaningless words in the topic list. @mschmitz can you maybe help?

This the XML file - Thank you very much!

<?xml version="1.0" encoding="UTF-8"?><process version="9.6.000">
  <context>
    <input/>
    <output/>
    <macros/>
  </context>
  <operator activated="true" class="process" compatibility="9.6.000" expanded="true" name="Process">
    <parameter key="logverbosity" value="init"/>
    <parameter key="random_seed" value="2001"/>
    <parameter key="send_mail" value="never"/>
    <parameter key="notification_email" value=""/>
    <parameter key="process_duration_for_mail" value="30"/>
    <parameter key="encoding" value="SYSTEM"/>
    <process expanded="true">
      <operator activated="true" class="text:process_document_from_file" compatibility="9.3.001" expanded="true" height="82" name="Process Documents from Files" width="90" x="112" y="34">
        <list key="text_directories">
          <parameter key="MembersCoops" value="F:\2019-2020 Thesis MBA\Bylaws Coops\Labour-members"/>
        </list>
        <parameter key="file_pattern" value="*"/>
        <parameter key="extract_text_only" value="true"/>
        <parameter key="use_file_extension_as_type" value="true"/>
        <parameter key="content_type" value="txt"/>
        <parameter key="encoding" value="SYSTEM"/>
        <parameter key="create_word_vector" value="true"/>
        <parameter key="vector_creation" value="TF-IDF"/>
        <parameter key="add_meta_information" value="true"/>
        <parameter key="keep_text" value="true"/>
        <parameter key="prune_method" value="absolute"/>
        <parameter key="prune_below_percent" value="3.0"/>
        <parameter key="prune_above_percent" value="30.0"/>
        <parameter key="prune_below_absolute" value="3"/>
        <parameter key="prune_above_absolute" value="9999"/>
        <parameter key="prune_below_rank" value="0.05"/>
        <parameter key="prune_above_rank" value="0.95"/>
        <parameter key="datamanagement" value="double_sparse_array"/>
        <parameter key="data_management" value="auto"/>
        <process expanded="true">
          <operator activated="true" class="text:transform_cases" compatibility="9.3.001" expanded="true" height="68" name="Transform Cases" width="90" x="45" y="34">
            <parameter key="transform_to" value="lower case"/>
          </operator>
          <operator activated="true" class="text:tokenize" compatibility="9.3.001" expanded="true" height="68" name="Tokenize" width="90" x="179" y="34">
            <parameter key="mode" value="non letters"/>
            <parameter key="characters" value=".:"/>
            <parameter key="language" value="English"/>
            <parameter key="max_token_length" value="3"/>
          </operator>
          <operator activated="true" class="text:filter_stopwords_english" compatibility="9.3.001" expanded="true" height="68" name="Filter Stopwords (English)" width="90" x="313" y="34"/>
          <operator activated="true" class="text:filter_by_length" compatibility="9.3.001" expanded="true" height="68" name="Filter Tokens (by Length)" width="90" x="447" y="34">
            <parameter key="min_chars" value="4"/>
            <parameter key="max_chars" value="20"/>
          </operator>
          <operator activated="true" class="text:stem_porter" compatibility="9.3.001" expanded="true" height="68" name="Stem (Porter)" width="90" x="581" y="34"/>
          <connect from_port="document" to_op="Transform Cases" to_port="document"/>
          <connect from_op="Transform Cases" from_port="document" to_op="Tokenize" to_port="document"/>
          <connect from_op="Tokenize" from_port="document" to_op="Filter Stopwords (English)" to_port="document"/>
          <connect from_op="Filter Stopwords (English)" from_port="document" to_op="Filter Tokens (by Length)" to_port="document"/>
          <connect from_op="Filter Tokens (by Length)" from_port="document" to_op="Stem (Porter)" to_port="document"/>
          <connect from_op="Stem (Porter)" from_port="document" to_port="document 1"/>
          <portSpacing port="source_document" spacing="0"/>
          <portSpacing port="sink_document 1" spacing="0"/>
          <portSpacing port="sink_document 2" spacing="0"/>
        </process>
      </operator>
      <operator activated="true" class="operator_toolbox:lda_exampleset" compatibility="2.4.000" expanded="true" height="124" name="Extract Topics from Data (LDA)" width="90" x="380" y="136">
        <parameter key="text_attribute" value="text"/>
        <parameter key="number_of_topics" value="10"/>
        <parameter key="use_alpha_heuristics" value="true"/>
        <parameter key="alpha_sum" value="0.1"/>
        <parameter key="use_beta_heuristics" value="true"/>
        <parameter key="beta" value="0.01"/>
        <parameter key="optimize_hyperparameters" value="true"/>
        <parameter key="optimize_interval_for_hyperparameters" value="10"/>
        <parameter key="top_words_per_topic" value="5"/>
        <parameter key="iterations" value="1000"/>
        <parameter key="reproducible" value="false"/>
        <parameter key="enable_logging" value="false"/>
        <parameter key="use_local_random_seed" value="false"/>
        <parameter key="local_random_seed" value="1992"/>
      </operator>
      <connect from_port="input 1" to_op="Process Documents from Files" to_port="word list"/>
      <connect from_op="Process Documents from Files" from_port="example set" to_op="Extract Topics from Data (LDA)" to_port="exa"/>
      <connect from_op="Process Documents from Files" from_port="word list" to_port="result 1"/>
      <connect from_op="Extract Topics from Data (LDA)" from_port="exa" to_port="result 2"/>
      <connect from_op="Extract Topics from Data (LDA)" from_port="top" to_port="result 3"/>
      <connect from_op="Extract Topics from Data (LDA)" from_port="mod" to_port="result 4"/>
      <portSpacing port="source_input 1" spacing="0"/>
      <portSpacing port="source_input 2" spacing="0"/>
      <portSpacing port="sink_result 1" spacing="0"/>
      <portSpacing port="sink_result 2" spacing="0"/>
      <portSpacing port="sink_result 3" spacing="0"/>
      <portSpacing port="sink_result 4" spacing="0"/>
      <portSpacing port="sink_result 5" spacing="0"/>
    </process>
  </operator>
</process>

Answers

  • Telcontar120
    Telcontar120 New Altair Community Member
    I seem to remember having a similar issue before with this operator, but I don't recall the solution.
    @mschmitz should be able to shed some light.
    In the meantime what happens if you store the data as a new exampleset after text data processing and then retrieve it as a fresh set before you run the LDA extract topics?  That should cut off its access to the various stopwords and short tokens.
  • MartinLiebig
    MartinLiebig
    Altair Employee
    Hi,

    i am frankly suprised that this even works at all? Isnt Process Documents creating a TF-IDF vector?

    Best,
    Martin