Hi..
I am newbie,
I would like to ask regarding Stacking method in Rapidminer.
So what I want to do is making stacking by using decision tree and naive bayes as base learner and for meta learner I want to use bagging with decision tree in inner process.
For validation I use 10 fold cross validation but I want to get performance result per each fold beside overall result.
More or less the scheme is as this
This is my design
<?xml version="1.0" encoding="UTF-8"?><process version="9.4.001"><br> <context><br> <input/><br> <output/><br> <macros/><br> </context><br> <operator activated="true" class="process" compatibility="9.4.001" expanded="true" name="Process"><br> <parameter key="logverbosity" value="init"/><br> <parameter key="random_seed" value="2001"/><br> <parameter key="send_mail" value="never"/><br> <parameter key="notification_email" value=""/><br> <parameter key="process_duration_for_mail" value="30"/><br> <parameter key="encoding" value="SYSTEM"/><br> <process expanded="true"><br> <operator activated="true" class="retrieve" compatibility="9.4.001" expanded="true" height="68" name="Retrieve bandung_L2" width="90" x="112" y="238"><br> <parameter key="repository_entry" value="//Thesis/data/bandung_L2"/><br> </operator><br> <operator activated="true" class="concurrency:cross_validation" compatibility="9.4.001" expanded="true" height="145" name="Cross Validation" width="90" x="380" y="187"><br> <parameter key="split_on_batch_attribute" value="false"/><br> <parameter key="leave_one_out" value="false"/><br> <parameter key="number_of_folds" value="10"/><br> <parameter key="sampling_type" value="stratified sampling"/><br> <parameter key="use_local_random_seed" value="false"/><br> <parameter key="local_random_seed" value="1992"/><br> <parameter key="enable_parallel_execution" value="true"/><br> <process expanded="true"><br> <operator activated="true" class="stacking" compatibility="9.4.001" expanded="true" height="68" name="Stacking" width="90" x="112" y="34"><br> <parameter key="keep_all_attributes" value="true"/><br> <parameter key="keep_confidences" value="false"/><br> <process expanded="true"><br> <operator activated="true" class="naive_bayes" compatibility="9.4.001" expanded="true" height="82" name="Naive Bayes" width="90" x="112" y="85"><br> <parameter key="laplace_correction" value="true"/><br> </operator><br> <operator activated="true" class="concurrency:parallel_decision_tree" compatibility="9.4.001" expanded="true" height="103" name="Decision Tree" width="90" x="112" y="187"><br> <parameter key="criterion" value="gain_ratio"/><br> <parameter key="maximal_depth" value="10"/><br> <parameter key="apply_pruning" value="true"/><br> <parameter key="confidence" value="0.1"/><br> <parameter key="apply_prepruning" value="true"/><br> <parameter key="minimal_gain" value="0.01"/><br> <parameter key="minimal_leaf_size" value="2"/><br> <parameter key="minimal_size_for_split" value="4"/><br> <parameter key="number_of_prepruning_alternatives" value="3"/><br> </operator><br> <connect from_port="training set 1" to_op="Naive Bayes" to_port="training set"/><br> <connect from_port="training set 2" to_op="Decision Tree" to_port="training set"/><br> <connect from_op="Naive Bayes" from_port="model" to_port="base model 1"/><br> <connect from_op="Decision Tree" from_port="model" to_port="base model 2"/><br> <portSpacing port="source_training set 1" spacing="0"/><br> <portSpacing port="source_training set 2" spacing="0"/><br> <portSpacing port="source_training set 3" spacing="0"/><br> <portSpacing port="sink_base model 1" spacing="0"/><br> <portSpacing port="sink_base model 2" spacing="0"/><br> <portSpacing port="sink_base model 3" spacing="0"/><br> </process><br> <process expanded="true"><br> <operator activated="true" class="bagging" compatibility="9.4.001" expanded="true" height="82" name="Bagging" width="90" x="112" y="34"><br> <parameter key="sample_ratio" value="0.9"/><br> <parameter key="iterations" value="10"/><br> <parameter key="average_confidences" value="true"/><br> <parameter key="use_local_random_seed" value="false"/><br> <parameter key="local_random_seed" value="1992"/><br> <process expanded="true"><br> <operator activated="true" class="concurrency:parallel_decision_tree" compatibility="9.4.001" expanded="true" height="103" name="Decision Tree (2)" width="90" x="313" y="85"><br> <parameter key="criterion" value="gain_ratio"/><br> <parameter key="maximal_depth" value="10"/><br> <parameter key="apply_pruning" value="true"/><br> <parameter key="confidence" value="0.1"/><br> <parameter key="apply_prepruning" value="true"/><br> <parameter key="minimal_gain" value="0.01"/><br> <parameter key="minimal_leaf_size" value="2"/><br> <parameter key="minimal_size_for_split" value="4"/><br> <parameter key="number_of_prepruning_alternatives" value="3"/><br> </operator><br> <connect from_port="training set" to_op="Decision Tree (2)" to_port="training set"/><br> <connect from_op="Decision Tree (2)" from_port="model" to_port="model"/><br> <portSpacing port="source_training set" spacing="0"/><br> <portSpacing port="sink_model" spacing="0"/><br> </process><br> </operator><br> <connect from_port="stacking examples" to_op="Bagging" to_port="training set"/><br> <connect from_op="Bagging" from_port="model" to_port="stacking model"/><br> <portSpacing port="source_stacking examples" spacing="0"/><br> <portSpacing port="sink_stacking model" spacing="0"/><br> </process><br> </operator><br> <connect from_port="training set" to_op="Stacking" to_port="training set"/><br> <connect from_op="Stacking" from_port="model" to_port="model"/><br> <portSpacing port="source_training set" spacing="0"/><br> <portSpacing port="sink_model" spacing="0"/><br> <portSpacing port="sink_through 1" spacing="0"/><br> </process><br> <process expanded="true"><br> <operator activated="true" class="apply_model" compatibility="9.4.001" expanded="true" height="82" name="Apply Model" width="90" x="112" y="85"><br> <list key="application_parameters"/><br> <parameter key="create_view" value="false"/><br> </operator><br> <operator activated="true" class="performance_binominal_classification" compatibility="9.4.001" expanded="true" height="82" name="Performance" width="90" x="246" y="136"><br> <parameter key="manually_set_positive_class" value="false"/><br> <parameter key="main_criterion" value="first"/><br> <parameter key="accuracy" value="true"/><br> <parameter key="classification_error" value="false"/><br> <parameter key="kappa" value="false"/><br> <parameter key="AUC (optimistic)" value="false"/><br> <parameter key="AUC" value="false"/><br> <parameter key="AUC (pessimistic)" value="false"/><br> <parameter key="precision" value="true"/><br> <parameter key="recall" value="true"/><br> <parameter key="lift" value="false"/><br> <parameter key="fallout" value="false"/><br> <parameter key="f_measure" value="false"/><br> <parameter key="false_positive" value="false"/><br> <parameter key="false_negative" value="false"/><br> <parameter key="true_positive" value="false"/><br> <parameter key="true_negative" value="false"/><br> <parameter key="sensitivity" value="false"/><br> <parameter key="specificity" value="false"/><br> <parameter key="youden" value="false"/><br> <parameter key="positive_predictive_value" value="false"/><br> <parameter key="negative_predictive_value" value="false"/><br> <parameter key="psep" value="false"/><br> <parameter key="skip_undefined_labels" value="true"/><br> <parameter key="use_example_weights" value="true"/><br> </operator><br> <connect from_port="model" to_op="Apply Model" to_port="model"/><br> <connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/><br> <connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/><br> <connect from_op="Performance" from_port="performance" to_port="performance 1"/><br> <portSpacing port="source_model" spacing="0"/><br> <portSpacing port="source_test set" spacing="0"/><br> <portSpacing port="source_through 1" spacing="0"/><br> <portSpacing port="sink_test set results" spacing="0"/><br> <portSpacing port="sink_performance 1" spacing="0"/><br> <portSpacing port="sink_performance 2" spacing="0"/><br> </process><br> </operator><br> <connect from_op="Retrieve bandung_L2" from_port="output" to_op="Cross Validation" to_port="example set"/><br> <connect from_op="Cross Validation" from_port="model" to_port="result 1"/><br> <connect from_op="Cross Validation" from_port="performance 1" to_port="result 2"/><br> <portSpacing port="source_input 1" spacing="0"/><br> <portSpacing port="sink_result 1" spacing="0"/><br> <portSpacing port="sink_result 2" spacing="0"/><br> <portSpacing port="sink_result 3" spacing="0"/><br> </process><br> </operator><br></process>
Kindly please advice is my design correct for above purpose (design & data attached) ?, and is it possible to display/store testing example process per each fold ? any comment highly appreciate.
Thank you in advance.