Please provide the steps for generating the sensitivity value for a dataset
indu
New Altair Community Member
Answers
-
Hi @indu
Maybe you mean the sensitivity of your model ?
In this case, you have to use the Performance (Binominal Classification) operator.
Check sensitivity in the parameters of this operator.
Here an example of process using this operator :<?xml version="1.0" encoding="UTF-8"?><process version="9.5.000"> <context> <input/> <output/> <macros/> </context> <operator activated="true" class="process" compatibility="9.5.000" expanded="true" name="Process"> <parameter key="logverbosity" value="init"/> <parameter key="random_seed" value="2001"/> <parameter key="send_mail" value="never"/> <parameter key="notification_email" value=""/> <parameter key="process_duration_for_mail" value="30"/> <parameter key="encoding" value="SYSTEM"/> <process expanded="true"> <operator activated="true" class="retrieve" compatibility="9.5.000" expanded="true" height="68" name="Retrieve Titanic" width="90" x="112" y="34"> <parameter key="repository_entry" value="//Samples/data/Titanic"/> </operator> <operator activated="true" class="set_role" compatibility="9.5.000" expanded="true" height="82" name="Set Role" width="90" x="246" y="34"> <parameter key="attribute_name" value="Survived"/> <parameter key="target_role" value="label"/> <list key="set_additional_roles"> <parameter key="Name" value="id"/> </list> </operator> <operator activated="true" class="concurrency:cross_validation" compatibility="9.5.000" expanded="true" height="145" name="Cross Validation" width="90" x="380" y="34"> <parameter key="split_on_batch_attribute" value="false"/> <parameter key="leave_one_out" value="false"/> <parameter key="number_of_folds" value="10"/> <parameter key="sampling_type" value="automatic"/> <parameter key="use_local_random_seed" value="false"/> <parameter key="local_random_seed" value="1992"/> <parameter key="enable_parallel_execution" value="true"/> <process expanded="true"> <operator activated="true" class="concurrency:parallel_decision_tree" compatibility="9.5.000" expanded="true" height="103" name="Decision Tree" width="90" x="179" y="34"> <parameter key="criterion" value="gain_ratio"/> <parameter key="maximal_depth" value="10"/> <parameter key="apply_pruning" value="true"/> <parameter key="confidence" value="0.1"/> <parameter key="apply_prepruning" value="true"/> <parameter key="minimal_gain" value="0.01"/> <parameter key="minimal_leaf_size" value="2"/> <parameter key="minimal_size_for_split" value="4"/> <parameter key="number_of_prepruning_alternatives" value="3"/> </operator> <connect from_port="training set" to_op="Decision Tree" to_port="training set"/> <connect from_op="Decision Tree" from_port="model" to_port="model"/> <portSpacing port="source_training set" spacing="0"/> <portSpacing port="sink_model" spacing="0"/> <portSpacing port="sink_through 1" spacing="0"/> </process> <process expanded="true"> <operator activated="true" class="apply_model" compatibility="9.5.000" expanded="true" height="82" name="Apply Model" width="90" x="112" y="34"> <list key="application_parameters"/> <parameter key="create_view" value="false"/> </operator> <operator activated="true" class="performance_binominal_classification" compatibility="9.5.000" expanded="true" height="82" name="Performance" width="90" x="246" y="34"> <parameter key="manually_set_positive_class" value="false"/> <parameter key="main_criterion" value="first"/> <parameter key="accuracy" value="true"/> <parameter key="classification_error" value="false"/> <parameter key="kappa" value="false"/> <parameter key="AUC (optimistic)" value="false"/> <parameter key="AUC" value="false"/> <parameter key="AUC (pessimistic)" value="false"/> <parameter key="precision" value="false"/> <parameter key="recall" value="false"/> <parameter key="lift" value="false"/> <parameter key="fallout" value="false"/> <parameter key="f_measure" value="false"/> <parameter key="false_positive" value="false"/> <parameter key="false_negative" value="false"/> <parameter key="true_positive" value="false"/> <parameter key="true_negative" value="false"/> <parameter key="sensitivity" value="true"/> <parameter key="specificity" value="false"/> <parameter key="youden" value="false"/> <parameter key="positive_predictive_value" value="false"/> <parameter key="negative_predictive_value" value="false"/> <parameter key="psep" value="false"/> <parameter key="skip_undefined_labels" value="true"/> <parameter key="use_example_weights" value="true"/> </operator> <connect from_port="model" to_op="Apply Model" to_port="model"/> <connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/> <connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/> <connect from_op="Performance" from_port="performance" to_port="performance 1"/> <portSpacing port="source_model" spacing="0"/> <portSpacing port="source_test set" spacing="0"/> <portSpacing port="source_through 1" spacing="0"/> <portSpacing port="sink_test set results" spacing="0"/> <portSpacing port="sink_performance 1" spacing="0"/> <portSpacing port="sink_performance 2" spacing="0"/> </process> </operator> <connect from_op="Retrieve Titanic" from_port="output" to_op="Set Role" to_port="example set input"/> <connect from_op="Set Role" from_port="example set output" to_op="Cross Validation" to_port="example set"/> <connect from_op="Cross Validation" from_port="example set" to_port="result 1"/> <connect from_op="Cross Validation" from_port="performance 1" to_port="result 2"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="sink_result 1" spacing="0"/> <portSpacing port="sink_result 2" spacing="0"/> <portSpacing port="sink_result 3" spacing="0"/> </process> </operator> </process>
Hope this helps,
Regards,
Lionel
1 -
Thank you very much for your reply. I will try it out.0