Can i combine two algorithm for example naive bayes with c.45
Echo1
New Altair Community Member
Answers
-
HiStacking or Vote are two operators you may want to use.Best,Martin3
-
Mr mschmitz can you explain the step? Is read excel=>split data=>algorithms=>stack or vote=>apply model=>performance true? Or i miss the step??0
-
Hi @Echo1,
Here an example of process using Vote operator inside a Split Validation operator. (it is the tutorial process of Vote operator)
Hope this helps,
Regards,
Lionel<?xml version="1.0" encoding="UTF-8"?><process version="9.5.000"> <context> <input/> <output/> <macros/> </context> <operator activated="true" class="process" compatibility="9.4.000" expanded="true" name="Process" origin="GENERATED_TUTORIAL"> <parameter key="logverbosity" value="init"/> <parameter key="random_seed" value="2001"/> <parameter key="send_mail" value="never"/> <parameter key="notification_email" value=""/> <parameter key="process_duration_for_mail" value="30"/> <parameter key="encoding" value="SYSTEM"/> <process expanded="true"> <operator activated="true" class="retrieve" compatibility="9.5.000" expanded="true" height="68" name="Sonar" origin="GENERATED_TUTORIAL" width="90" x="45" y="34"> <parameter key="repository_entry" value="//Samples/data/Sonar"/> </operator> <operator activated="true" class="split_validation" compatibility="9.5.000" expanded="true" height="124" name="Validation" origin="GENERATED_TUTORIAL" width="90" x="246" y="34"> <parameter key="create_complete_model" value="false"/> <parameter key="split" value="relative"/> <parameter key="split_ratio" value="0.7"/> <parameter key="training_set_size" value="100"/> <parameter key="test_set_size" value="-1"/> <parameter key="sampling_type" value="automatic"/> <parameter key="use_local_random_seed" value="false"/> <parameter key="local_random_seed" value="1992"/> <process expanded="true"> <operator activated="true" class="vote" compatibility="9.5.000" expanded="true" height="68" name="Vote" origin="GENERATED_TUTORIAL" width="90" x="112" y="34"> <process expanded="true"> <operator activated="true" class="concurrency:parallel_decision_tree" compatibility="9.4.000" expanded="true" height="103" name="Decision Tree" origin="GENERATED_TUTORIAL" width="90" x="313" y="34"> <parameter key="criterion" value="gain_ratio"/> <parameter key="maximal_depth" value="20"/> <parameter key="apply_pruning" value="true"/> <parameter key="confidence" value="0.25"/> <parameter key="apply_prepruning" value="true"/> <parameter key="minimal_gain" value="0.1"/> <parameter key="minimal_leaf_size" value="2"/> <parameter key="minimal_size_for_split" value="4"/> <parameter key="number_of_prepruning_alternatives" value="3"/> </operator> <operator activated="true" class="neural_net" compatibility="9.5.000" expanded="true" height="82" name="Neural Net" origin="GENERATED_TUTORIAL" width="90" x="313" y="187"> <list key="hidden_layers"/> <parameter key="training_cycles" value="500"/> <parameter key="learning_rate" value="0.3"/> <parameter key="momentum" value="0.2"/> <parameter key="decay" value="false"/> <parameter key="shuffle" value="true"/> <parameter key="normalize" value="true"/> <parameter key="error_epsilon" value="1.0E-5"/> <parameter key="use_local_random_seed" value="false"/> <parameter key="local_random_seed" value="1992"/> </operator> <operator activated="true" class="support_vector_machine" compatibility="9.5.000" expanded="true" height="124" name="SVM" origin="GENERATED_TUTORIAL" width="90" x="313" y="289"> <parameter key="kernel_type" value="dot"/> <parameter key="kernel_gamma" value="1.0"/> <parameter key="kernel_sigma1" value="1.0"/> <parameter key="kernel_sigma2" value="0.0"/> <parameter key="kernel_sigma3" value="2.0"/> <parameter key="kernel_shift" value="1.0"/> <parameter key="kernel_degree" value="2.0"/> <parameter key="kernel_a" value="1.0"/> <parameter key="kernel_b" value="0.0"/> <parameter key="kernel_cache" value="200"/> <parameter key="C" value="0.0"/> <parameter key="convergence_epsilon" value="0.001"/> <parameter key="max_iterations" value="100000"/> <parameter key="scale" value="true"/> <parameter key="calculate_weights" value="true"/> <parameter key="return_optimization_performance" value="true"/> <parameter key="L_pos" value="1.0"/> <parameter key="L_neg" value="1.0"/> <parameter key="epsilon" value="0.0"/> <parameter key="epsilon_plus" value="0.0"/> <parameter key="epsilon_minus" value="0.0"/> <parameter key="balance_cost" value="false"/> <parameter key="quadratic_loss_pos" value="false"/> <parameter key="quadratic_loss_neg" value="false"/> <parameter key="estimate_performance" value="false"/> </operator> <connect from_port="training set 1" to_op="Decision Tree" to_port="training set"/> <connect from_port="training set 2" to_op="Neural Net" to_port="training set"/> <connect from_port="training set 3" to_op="SVM" to_port="training set"/> <connect from_op="Decision Tree" from_port="model" to_port="base model 1"/> <connect from_op="Neural Net" from_port="model" to_port="base model 2"/> <connect from_op="SVM" from_port="model" to_port="base model 3"/> <portSpacing port="source_training set 1" spacing="0"/> <portSpacing port="source_training set 2" spacing="72"/> <portSpacing port="source_training set 3" spacing="72"/> <portSpacing port="source_training set 4" spacing="0"/> <portSpacing port="sink_base model 1" spacing="0"/> <portSpacing port="sink_base model 2" spacing="72"/> <portSpacing port="sink_base model 3" spacing="72"/> <portSpacing port="sink_base model 4" spacing="0"/> </process> </operator> <connect from_port="training" to_op="Vote" to_port="training set"/> <connect from_op="Vote" from_port="model" to_port="model"/> <portSpacing port="source_training" spacing="0"/> <portSpacing port="sink_model" spacing="0"/> <portSpacing port="sink_through 1" spacing="0"/> </process> <process expanded="true"> <operator activated="true" class="apply_model" compatibility="9.5.000" expanded="true" height="82" name="Apply Model" origin="GENERATED_TUTORIAL" width="90" x="45" y="34"> <list key="application_parameters"/> <parameter key="create_view" value="false"/> </operator> <operator activated="true" class="performance" compatibility="9.5.000" expanded="true" height="82" name="Performance" origin="GENERATED_TUTORIAL" width="90" x="179" y="34"> <parameter key="use_example_weights" value="true"/> </operator> <connect from_port="model" to_op="Apply Model" to_port="model"/> <connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/> <connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/> <connect from_op="Performance" from_port="performance" to_port="averagable 1"/> <portSpacing port="source_model" spacing="0"/> <portSpacing port="source_test set" spacing="0"/> <portSpacing port="source_through 1" spacing="0"/> <portSpacing port="sink_averagable 1" spacing="0"/> <portSpacing port="sink_averagable 2" spacing="0"/> </process> </operator> <connect from_op="Sonar" from_port="output" to_op="Validation" to_port="training"/> <connect from_op="Validation" from_port="model" to_port="result 1"/> <connect from_op="Validation" from_port="training" to_port="result 3"/> <connect from_op="Validation" from_port="averagable 1" to_port="result 2"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="sink_result 1" spacing="0"/> <portSpacing port="sink_result 2" spacing="42"/> <portSpacing port="sink_result 3" spacing="66"/> <portSpacing port="sink_result 4" spacing="0"/> </process> </operator> </process>
1