Is this kind of flow correct?

Papad
Papad New Altair Community Member
edited November 5 in Community Q&A
Hi, do you think that this kind of flow is correct?
Here is the XML code:

------------------------------------------------------------------------------------------------------------


<?xml version="1.0" encoding="UTF-8"?><process version="9.2.001">
  <context>
    <input/>
    <output/>
    <macros/>
  </context>
  <operator activated="true" class="process" compatibility="9.2.001" expanded="true" name="Process">
    <parameter key="logverbosity" value="init"/>
    <parameter key="random_seed" value="2001"/>
    <parameter key="send_mail" value="never"/>
    <parameter key="notification_email" value=""/>
    <parameter key="process_duration_for_mail" value="30"/>
    <parameter key="encoding" value="SYSTEM"/>
    <process expanded="true">
      <operator activated="true" class="retrieve" compatibility="9.2.001" expanded="true" height="68" name="Retrieve" width="90" x="45" y="34"/>
      <operator activated="true" class="set_role" compatibility="9.2.001" expanded="true" height="82" name="Set Role" width="90" x="179" y="34">
        <parameter key="attribute_name" value=""/>
        <parameter key="target_role" value="regular"/>
        <list key="set_additional_roles"/>
      </operator>
      <operator activated="true" class="multiply" compatibility="9.2.001" expanded="true" height="103" name="Multiply" width="90" x="313" y="34"/>
      <operator activated="true" class="filter_examples" compatibility="9.2.001" expanded="true" height="103" name="Filter Examples" width="90" x="447" y="34">
        <parameter key="parameter_expression" value=""/>
        <parameter key="condition_class" value="custom_filters"/>
        <parameter key="invert_filter" value="false"/>
        <list key="filters_list">
          <parameter key="filters_entry_key" value="null.is_not_missing."/>
        </list>
        <parameter key="filters_logic_and" value="true"/>
        <parameter key="filters_check_metadata" value="true"/>
      </operator>
      <operator activated="true" class="concurrency:cross_validation" compatibility="9.2.001" expanded="true" height="145" name="Cross Validation" width="90" x="581" y="34">
        <parameter key="split_on_batch_attribute" value="false"/>
        <parameter key="leave_one_out" value="false"/>
        <parameter key="number_of_folds" value="10"/>
        <parameter key="sampling_type" value="automatic"/>
        <parameter key="use_local_random_seed" value="false"/>
        <parameter key="local_random_seed" value="1992"/>
        <parameter key="enable_parallel_execution" value="true"/>
        <process expanded="true">
          <operator activated="true" class="h2o:deep_learning" compatibility="9.2.000" expanded="true" height="82" name="Deep Learning" width="90" x="112" y="34">
            <parameter key="activation" value="Rectifier"/>
            <enumeration key="hidden_layer_sizes">
              <parameter key="hidden_layer_sizes" value="50"/>
              <parameter key="hidden_layer_sizes" value="50"/>
            </enumeration>
            <enumeration key="hidden_dropout_ratios"/>
            <parameter key="reproducible_(uses_1_thread)" value="false"/>
            <parameter key="use_local_random_seed" value="false"/>
            <parameter key="local_random_seed" value="1992"/>
            <parameter key="epochs" value="10.0"/>
            <parameter key="compute_variable_importances" value="false"/>
            <parameter key="train_samples_per_iteration" value="-2"/>
            <parameter key="adaptive_rate" value="true"/>
            <parameter key="epsilon" value="1.0E-8"/>
            <parameter key="rho" value="0.99"/>
            <parameter key="learning_rate" value="0.005"/>
            <parameter key="learning_rate_annealing" value="1.0E-6"/>
            <parameter key="learning_rate_decay" value="1.0"/>
            <parameter key="momentum_start" value="0.0"/>
            <parameter key="momentum_ramp" value="1000000.0"/>
            <parameter key="momentum_stable" value="0.0"/>
            <parameter key="nesterov_accelerated_gradient" value="true"/>
            <parameter key="standardize" value="true"/>
            <parameter key="L1" value="1.0E-5"/>
            <parameter key="L2" value="0.0"/>
            <parameter key="max_w2" value="10.0"/>
            <parameter key="loss_function" value="Automatic"/>
            <parameter key="distribution_function" value="AUTO"/>
            <parameter key="early_stopping" value="false"/>
            <parameter key="stopping_rounds" value="1"/>
            <parameter key="stopping_metric" value="AUTO"/>
            <parameter key="stopping_tolerance" value="0.001"/>
            <parameter key="missing_values_handling" value="MeanImputation"/>
            <parameter key="max_runtime_seconds" value="0"/>
            <list key="expert_parameters"/>
            <list key="expert_parameters_"/>
          </operator>
          <connect from_port="training set" to_op="Deep Learning" to_port="training set"/>
          <connect from_op="Deep Learning" from_port="model" to_port="model"/>
          <portSpacing port="source_training set" spacing="0"/>
          <portSpacing port="sink_model" spacing="0"/>
          <portSpacing port="sink_through 1" spacing="0"/>
        </process>
        <process expanded="true">
          <operator activated="true" class="apply_model" compatibility="9.2.001" expanded="true" height="82" name="Apply Model" width="90" x="112" y="34">
            <list key="application_parameters"/>
            <parameter key="create_view" value="false"/>
          </operator>
          <operator activated="true" class="performance" compatibility="9.2.001" expanded="true" height="82" name="Performance" width="90" x="246" y="34">
            <parameter key="use_example_weights" value="true"/>
          </operator>
          <connect from_port="model" to_op="Apply Model" to_port="model"/>
          <connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/>
          <connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/>
          <connect from_op="Performance" from_port="performance" to_port="performance 1"/>
          <connect from_op="Performance" from_port="example set" to_port="test set results"/>
          <portSpacing port="source_model" spacing="0"/>
          <portSpacing port="source_test set" spacing="0"/>
          <portSpacing port="source_through 1" spacing="0"/>
          <portSpacing port="sink_test set results" spacing="0"/>
          <portSpacing port="sink_performance 1" spacing="0"/>
          <portSpacing port="sink_performance 2" spacing="0"/>
        </process>
      </operator>
      <operator activated="true" class="filter_examples" compatibility="9.2.001" expanded="true" height="103" name="Filter Examples (2)" width="90" x="514" y="340">
        <parameter key="parameter_expression" value=""/>
        <parameter key="condition_class" value="custom_filters"/>
        <parameter key="invert_filter" value="false"/>
        <list key="filters_list">
          <parameter key="filters_entry_key" value="null.is_missing."/>
        </list>
        <parameter key="filters_logic_and" value="true"/>
        <parameter key="filters_check_metadata" value="true"/>
      </operator>
      <operator activated="true" class="apply_model" compatibility="9.2.001" expanded="true" height="82" name="Apply Model (2)" width="90" x="782" y="136">
        <list key="application_parameters"/>
        <parameter key="create_view" value="false"/>
      </operator>
      <connect from_op="Retrieve" from_port="output" to_op="Set Role" to_port="example set input"/>
      <connect from_op="Set Role" from_port="example set output" to_op="Multiply" to_port="input"/>
      <connect from_op="Multiply" from_port="output 1" to_op="Filter Examples" to_port="example set input"/>
      <connect from_op="Multiply" from_port="output 2" to_op="Filter Examples (2)" to_port="example set input"/>
      <connect from_op="Filter Examples" from_port="example set output" to_op="Cross Validation" to_port="example set"/>
      <connect from_op="Cross Validation" from_port="model" to_op="Apply Model (2)" to_port="model"/>
      <connect from_op="Filter Examples (2)" from_port="example set output" to_op="Apply Model (2)" to_port="unlabelled data"/>
      <connect from_op="Apply Model (2)" from_port="labelled data" to_port="result 1"/>
      <connect from_op="Apply Model (2)" from_port="model" to_port="result 2"/>
      <portSpacing port="source_input 1" spacing="0"/>
      <portSpacing port="sink_result 1" spacing="0"/>
      <portSpacing port="sink_result 2" spacing="0"/>
      <portSpacing port="sink_result 3" spacing="0"/>
    </process>
  </operator>
</process>

Best Answer

Answers