🎉Community Raffle - Win $25

An exclusive raffle opportunity for active members like you! Complete your profile, answer questions and get your first accepted badge to enter the raffle.
Join and Win

draw scatter plot for cluster using execute python

User: "halaalrobassy"
New Altair Community Member
Updated by Jocelyn
i used kmeans cluster operator to cluster two columns and i want to draw the scatter plot for the resulting clusters. i tried using executer python operator but its input parameters doesn't accept text as cluster. can you tell me the way i can do it please

Find more posts tagged with

Sort by:
1 - 3 of 31
    User: "IngoRM"
    New Altair Community Member
    Hi,
    You really do not need to use Python for the plotting to be honest.  I have attached a process below which generates two columns and clusters the data.  At the end, you can simply click on Visualizations and set up the chart as desired (see below):


    The process is below.
    Hope this helps,
    Ingo

    <?xml version="1.0" encoding="UTF-8"?><process version="9.3.000-SNAPSHOT"><br>&nbsp; <context><br>&nbsp;&nbsp;&nbsp; <input/><br>&nbsp;&nbsp;&nbsp; <output/><br>&nbsp;&nbsp;&nbsp; <macros/><br>&nbsp; </context><br>&nbsp; <operator activated="true" class="process" compatibility="9.3.000-SNAPSHOT" expanded="true" name="Process"><br>&nbsp;&nbsp;&nbsp; <parameter key="logverbosity" value="init"/><br>&nbsp;&nbsp;&nbsp; <parameter key="random_seed" value="2001"/><br>&nbsp;&nbsp;&nbsp; <parameter key="send_mail" value="never"/><br>&nbsp;&nbsp;&nbsp; <parameter key="notification_email" value=""/><br>&nbsp;&nbsp;&nbsp; <parameter key="process_duration_for_mail" value="30"/><br>&nbsp;&nbsp;&nbsp; <parameter key="encoding" value="UTF-8"/><br>&nbsp;&nbsp;&nbsp; <process expanded="true"><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <operator activated="true" class="generate_data" compatibility="9.3.000-SNAPSHOT" expanded="true" height="68" name="Generate Data" width="90" x="45" y="34"><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="target_function" value="gaussian mixture clusters"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="number_examples" value="1000"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="number_of_attributes" value="2"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="attributes_lower_bound" value="-10.0"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="attributes_upper_bound" value="10.0"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="gaussian_standard_deviation" value="10.0"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="largest_radius" value="10.0"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="use_local_random_seed" value="false"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="local_random_seed" value="1992"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="datamanagement" value="double_array"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="data_management" value="auto"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </operator><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <operator activated="true" class="select_attributes" compatibility="9.3.000-SNAPSHOT" expanded="true" height="82" name="Select Attributes" width="90" x="179" y="34"><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="attribute_filter_type" value="single"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="attribute" value="label"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="attributes" value=""/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="use_except_expression" value="false"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="value_type" value="attribute_value"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="use_value_type_exception" value="false"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="except_value_type" value="time"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="block_type" value="attribute_block"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="use_block_type_exception" value="false"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="except_block_type" value="value_matrix_row_start"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="invert_selection" value="true"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="include_special_attributes" value="true"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </operator><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <operator activated="true" class="concurrency:k_means" compatibility="9.3.000-SNAPSHOT" expanded="true" height="82" name="Clustering" width="90" x="313" y="34"><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="add_cluster_attribute" value="true"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="add_as_label" value="false"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="remove_unlabeled" value="false"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="k" value="4"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="max_runs" value="10"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="determine_good_start_values" value="true"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="measure_types" value="BregmanDivergences"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="mixed_measure" value="MixedEuclideanDistance"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="nominal_measure" value="NominalDistance"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="numerical_measure" value="EuclideanDistance"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="divergence" value="SquaredEuclideanDistance"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="kernel_type" value="radial"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="kernel_gamma" value="1.0"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="kernel_sigma1" value="1.0"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="kernel_sigma2" value="0.0"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="kernel_sigma3" value="2.0"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="kernel_degree" value="3.0"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="kernel_shift" value="1.0"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="kernel_a" value="1.0"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="kernel_b" value="0.0"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="max_optimization_steps" value="100"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="use_local_random_seed" value="false"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <parameter key="local_random_seed" value="1992"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </operator><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <connect from_op="Generate Data" from_port="output" to_op="Select Attributes" to_port="example set input"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <connect from_op="Select Attributes" from_port="example set output" to_op="Clustering" to_port="example set"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <connect from_op="Clustering" from_port="clustered set" to_port="result 1"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <portSpacing port="source_input 1" spacing="0"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <portSpacing port="sink_result 1" spacing="0"/><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <portSpacing port="sink_result 2" spacing="0"/><br>&nbsp;&nbsp;&nbsp; </process><br>&nbsp; </operator><br></process>

    User: "halaalrobassy"
    New Altair Community Member
    OP
    thank you so much 
    but i want to make 3 dimensional visualization, can i do it without using python code
    User: "IngoRM"
    New Altair Community Member
    Yes, that is possible as well.  You simply select "Scatter 3D" as the plot type.