Home
Discussions
Community Q&A
What am i doing wrong with my model?
Umaima
I have to classify twitter data using neural net. Everytime i run my process, the message in the screenshot pops up. Sometimes the process keeps running forever without producing an output. i even tried reducing my sample size to -200,100, even 50! but it still doesnt work. Can someone kindly tell me how to fix my problem?
Find more posts tagged with
AI Studio
Classification
Accepted answers
All comments
varunm1
Hello
@Umaima
Looks like your memory is not sufficient for the process. Can you check RAM usagw
Thanks,
Varun
rfuentealba
Hello,
@Umaima
,
Open
RapidMiner Studio
Press
Cmd + ,
You will see a window named
RapidMiner Studio Preferences
.
There, click on the
System
pane.
In the
Maximum amount of memory
, make sure you have a value that is not too low. Depending on how old is your computer, I would recommend putting something like 2048 or 4096 before trying again. You may want to see the
About This Mac
system dialog to decide how much memory you want to put there.
Make sure you leave some memory for the operating system when you manipulate that value. It would be nice if you open the
Activity Monitor
to see what else is consuming memory.
Hope this helps,
Rodrigo.
Umaima
I tried that but it still doesnt work....It just keeps processing for a long time.
sgenzer
@Umaima
can you please post your XML so we can see exactly what you're doing?
https://community.rapidminer.com/discussion/37047
Umaima
<?xml version="1.0" encoding="UTF-8"?><process version="9.2.000">
<context>
<input/>
<output/>
<macros/>
</context>
<operator activated="true" class="process" compatibility="9.2.000" expanded="true" name="Process">
<parameter key="logverbosity" value="init"/>
<parameter key="random_seed" value="2001"/>
<parameter key="send_mail" value="never"/>
<parameter key="notification_email" value=""/>
<parameter key="process_duration_for_mail" value="30"/>
<parameter key="encoding" value="SYSTEM"/>
<process expanded="true">
<operator activated="true" class="retrieve" compatibility="9.2.000" expanded="true" height="68" name="Retrieve TweetDataForAssignment2" width="90" x="45" y="85">
<parameter key="repository_entry" value="//Local Repository/data/TweetDataForAssignment2"/>
</operator>
<operator activated="true" class="sample" compatibility="9.2.000" expanded="true" height="82" name="Sample" width="90" x="179" y="85">
<parameter key="sample" value="absolute"/>
<parameter key="balance_data" value="false"/>
<parameter key="sample_size" value="2000"/>
<parameter key="sample_ratio" value="0.1"/>
<parameter key="sample_probability" value="0.1"/>
<list key="sample_size_per_class"/>
<list key="sample_ratio_per_class"/>
<list key="sample_probability_per_class"/>
<parameter key="use_local_random_seed" value="false"/>
<parameter key="local_random_seed" value="1992"/>
</operator>
<operator activated="true" class="filter_examples" compatibility="9.2.000" expanded="true" height="103" name="Filter Examples" width="90" x="112" y="238">
<parameter key="parameter_expression" value=""/>
<parameter key="condition_class" value="custom_filters"/>
<parameter key="invert_filter" value="false"/>
<list key="filters_list">
<parameter key="filters_entry_key" value="Location.is_not_missing."/>
</list>
<parameter key="filters_logic_and" value="true"/>
<parameter key="filters_check_metadata" value="true"/>
</operator>
<operator activated="true" class="nominal_to_numerical" compatibility="9.2.000" expanded="true" height="103" name="Nominal to Numerical (2)" width="90" x="313" y="289">
<parameter key="return_preprocessing_model" value="false"/>
<parameter key="create_view" value="false"/>
<parameter key="attribute_filter_type" value="subset"/>
<parameter key="attribute" value=""/>
<parameter key="attributes" value="|Content|Location|Time|UserHomeTown"/>
<parameter key="use_except_expression" value="false"/>
<parameter key="value_type" value="nominal"/>
<parameter key="use_value_type_exception" value="false"/>
<parameter key="except_value_type" value="file_path"/>
<parameter key="block_type" value="single_value"/>
<parameter key="use_block_type_exception" value="false"/>
<parameter key="except_block_type" value="single_value"/>
<parameter key="invert_selection" value="false"/>
<parameter key="include_special_attributes" value="false"/>
<parameter key="coding_type" value="dummy coding"/>
<parameter key="use_comparison_groups" value="false"/>
<list key="comparison_groups"/>
<parameter key="unexpected_value_handling" value="all 0 and warning"/>
<parameter key="use_underscore_in_name" value="false"/>
</operator>
<operator activated="true" class="subprocess" compatibility="9.2.000" expanded="true" height="82" name="Subprocess" width="90" x="447" y="85">
<process expanded="true">
<operator activated="true" class="replace_missing_values" compatibility="9.2.000" expanded="true" height="103" name="Replace Missing Values" width="90" x="45" y="34">
<parameter key="return_preprocessing_model" value="false"/>
<parameter key="create_view" value="false"/>
<parameter key="attribute_filter_type" value="all"/>
<parameter key="attribute" value=""/>
<parameter key="attributes" value=""/>
<parameter key="use_except_expression" value="false"/>
<parameter key="value_type" value="attribute_value"/>
<parameter key="use_value_type_exception" value="false"/>
<parameter key="except_value_type" value="time"/>
<parameter key="block_type" value="attribute_block"/>
<parameter key="use_block_type_exception" value="false"/>
<parameter key="except_block_type" value="value_matrix_row_start"/>
<parameter key="invert_selection" value="false"/>
<parameter key="include_special_attributes" value="false"/>
<parameter key="default" value="average"/>
<list key="columns">
<parameter key="UserHomeTown" value="average"/>
</list>
</operator>
<operator activated="true" class="set_role" compatibility="9.2.000" expanded="true" height="82" name="Set Role" width="90" x="179" y="34">
<parameter key="attribute_name" value="Location"/>
<parameter key="target_role" value="label"/>
<list key="set_additional_roles"/>
</operator>
<operator activated="true" class="nominal_to_numerical" compatibility="9.2.000" expanded="true" height="103" name="Nominal to Numerical" width="90" x="313" y="34">
<parameter key="return_preprocessing_model" value="false"/>
<parameter key="create_view" value="false"/>
<parameter key="attribute_filter_type" value="subset"/>
<parameter key="attribute" value=""/>
<parameter key="attributes" value="|Content|Location|Time|UserHomeTown"/>
<parameter key="use_except_expression" value="false"/>
<parameter key="value_type" value="nominal"/>
<parameter key="use_value_type_exception" value="false"/>
<parameter key="except_value_type" value="file_path"/>
<parameter key="block_type" value="single_value"/>
<parameter key="use_block_type_exception" value="false"/>
<parameter key="except_block_type" value="single_value"/>
<parameter key="invert_selection" value="false"/>
<parameter key="include_special_attributes" value="false"/>
<parameter key="coding_type" value="unique integers"/>
<parameter key="use_comparison_groups" value="false"/>
<list key="comparison_groups"/>
<parameter key="unexpected_value_handling" value="all 0 and warning"/>
<parameter key="use_underscore_in_name" value="false"/>
</operator>
<connect from_port="in 1" to_op="Replace Missing Values" to_port="example set input"/>
<connect from_op="Replace Missing Values" from_port="example set output" to_op="Set Role" to_port="example set input"/>
<connect from_op="Set Role" from_port="example set output" to_op="Nominal to Numerical" to_port="example set input"/>
<connect from_op="Nominal to Numerical" from_port="example set output" to_port="out 1"/>
<portSpacing port="source_in 1" spacing="0"/>
<portSpacing port="source_in 2" spacing="0"/>
<portSpacing port="sink_out 1" spacing="0"/>
<portSpacing port="sink_out 2" spacing="0"/>
</process>
</operator>
<operator activated="true" class="neural_net" compatibility="9.2.000" expanded="true" height="82" name="Neural Net" width="90" x="581" y="85">
<list key="hidden_layers"/>
<parameter key="training_cycles" value="500"/>
<parameter key="learning_rate" value="0.3"/>
<parameter key="momentum" value="0.2"/>
<parameter key="decay" value="false"/>
<parameter key="shuffle" value="true"/>
<parameter key="normalize" value="true"/>
<parameter key="error_epsilon" value="1.0E-4"/>
<parameter key="use_local_random_seed" value="false"/>
<parameter key="local_random_seed" value="1992"/>
</operator>
<operator activated="true" class="apply_model" compatibility="9.2.000" expanded="true" height="82" name="Apply Model" width="90" x="581" y="238">
<list key="application_parameters"/>
<parameter key="create_view" value="false"/>
</operator>
<connect from_op="Retrieve TweetDataForAssignment2" from_port="output" to_op="Sample" to_port="example set input"/>
<connect from_op="Sample" from_port="example set output" to_op="Filter Examples" to_port="example set input"/>
<connect from_op="Filter Examples" from_port="example set output" to_op="Subprocess" to_port="in 1"/>
<connect from_op="Filter Examples" from_port="unmatched example set" to_op="Nominal to Numerical (2)" to_port="example set input"/>
<connect from_op="Nominal to Numerical (2)" from_port="example set output" to_op="Apply Model" to_port="unlabelled data"/>
<connect from_op="Subprocess" from_port="out 1" to_op="Neural Net" to_port="training set"/>
<connect from_op="Neural Net" from_port="model" to_op="Apply Model" to_port="model"/>
<connect from_op="Apply Model" from_port="labelled data" to_port="result 1"/>
<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="sink_result 1" spacing="0"/>
<portSpacing port="sink_result 2" spacing="0"/>
</process>
</operator>
</process>
sgenzer
can you also please post your data set? I cannot replicate your work unless I have your "TweetDataForAssignment2"
Quick Links
All Categories
Recent Discussions
Activity
Unanswered
日本語 (Japanese)
한국어(Korean)