A program to recognize and reward our most engaged community members
<?xml version="1.0" encoding="UTF-8"?><process version="9.2.000"><br> <context><br> <input/><br> <output/><br> <macros/><br> </context><br> <operator activated="true" class="process" compatibility="9.2.000" expanded="true" name="Process"><br> <parameter key="logverbosity" value="init"/><br> <parameter key="random_seed" value="2001"/><br> <parameter key="send_mail" value="never"/><br> <parameter key="notification_email" value=""/><br> <parameter key="process_duration_for_mail" value="30"/><br> <parameter key="encoding" value="UTF-8"/><br> <process expanded="true"><br> <operator activated="true" class="retrieve" compatibility="9.2.000" expanded="true" height="68" name="Retrieve Titanic Training" width="90" x="45" y="34"><br> <parameter key="repository_entry" value="//Samples/data/Titanic Training"/><br> </operator><br> <operator activated="true" class="set_role" compatibility="9.2.000" expanded="true" height="82" name="Set Role" width="90" x="179" y="34"><br> <parameter key="attribute_name" value="Survived"/><br> <parameter key="target_role" value="label"/><br> <list key="set_additional_roles"/><br> </operator><br> <operator activated="true" class="concurrency:loop_values" compatibility="9.2.000" expanded="true" height="82" name="Loop Values" width="90" x="313" y="34"><br> <parameter key="attribute" value="Passenger Class"/><br> <parameter key="iteration_macro" value="loop_value"/><br> <parameter key="reuse_results" value="false"/><br> <parameter key="enable_parallel_execution" value="true"/><br> <process expanded="true"><br> <operator activated="true" class="filter_examples" compatibility="9.2.000" expanded="true" height="103" name="Filter Examples" width="90" x="45" y="85"><br> <parameter key="parameter_expression" value=""/><br> <parameter key="condition_class" value="custom_filters"/><br> <parameter key="invert_filter" value="false"/><br> <list key="filters_list"><br> <parameter key="filters_entry_key" value="Passenger Class.equals.%{loop_value}"/><br> </list><br> <parameter key="filters_logic_and" value="true"/><br> <parameter key="filters_check_metadata" value="true"/><br> </operator><br> <operator activated="true" class="select_attributes" compatibility="9.2.000" expanded="true" height="82" name="Select Attributes (2)" width="90" x="179" y="136"><br> <parameter key="attribute_filter_type" value="single"/><br> <parameter key="attribute" value="Passenger Class"/><br> <parameter key="attributes" value=""/><br> <parameter key="use_except_expression" value="false"/><br> <parameter key="value_type" value="attribute_value"/><br> <parameter key="use_value_type_exception" value="false"/><br> <parameter key="except_value_type" value="time"/><br> <parameter key="block_type" value="attribute_block"/><br> <parameter key="use_block_type_exception" value="false"/><br> <parameter key="except_block_type" value="value_matrix_row_start"/><br> <parameter key="invert_selection" value="true"/><br> <parameter key="include_special_attributes" value="false"/><br> </operator><br> <operator activated="true" class="concurrency:parallel_decision_tree" compatibility="9.2.000" expanded="true" height="103" name="Decision Tree" width="90" x="313" y="136"><br> <parameter key="criterion" value="gain_ratio"/><br> <parameter key="maximal_depth" value="10"/><br> <parameter key="apply_pruning" value="true"/><br> <parameter key="confidence" value="0.1"/><br> <parameter key="apply_prepruning" value="true"/><br> <parameter key="minimal_gain" value="0.01"/><br> <parameter key="minimal_leaf_size" value="2"/><br> <parameter key="minimal_size_for_split" value="4"/><br> <parameter key="number_of_prepruning_alternatives" value="3"/><br> </operator><br> <operator activated="true" class="select_attributes" compatibility="9.2.000" expanded="true" height="82" name="Select Attributes" width="90" x="179" y="34"><br> <parameter key="attribute_filter_type" value="single"/><br> <parameter key="attribute" value="Passenger Class"/><br> <parameter key="attributes" value=""/><br> <parameter key="use_except_expression" value="false"/><br> <parameter key="value_type" value="attribute_value"/><br> <parameter key="use_value_type_exception" value="false"/><br> <parameter key="except_value_type" value="time"/><br> <parameter key="block_type" value="attribute_block"/><br> <parameter key="use_block_type_exception" value="false"/><br> <parameter key="except_block_type" value="value_matrix_row_start"/><br> <parameter key="invert_selection" value="true"/><br> <parameter key="include_special_attributes" value="false"/><br> </operator><br> <operator activated="true" class="apply_model" compatibility="9.2.000" expanded="true" height="82" name="Apply Model" width="90" x="447" y="34"><br> <list key="application_parameters"/><br> <parameter key="create_view" value="false"/><br> </operator><br> <operator activated="true" class="performance_classification" compatibility="9.2.000" expanded="true" height="82" name="Performance" width="90" x="581" y="34"><br> <parameter key="main_criterion" value="first"/><br> <parameter key="accuracy" value="true"/><br> <parameter key="classification_error" value="false"/><br> <parameter key="kappa" value="false"/><br> <parameter key="weighted_mean_recall" value="false"/><br> <parameter key="weighted_mean_precision" value="false"/><br> <parameter key="spearman_rho" value="false"/><br> <parameter key="kendall_tau" value="false"/><br> <parameter key="absolute_error" value="false"/><br> <parameter key="relative_error" value="false"/><br> <parameter key="relative_error_lenient" value="false"/><br> <parameter key="relative_error_strict" value="false"/><br> <parameter key="normalized_absolute_error" value="false"/><br> <parameter key="root_mean_squared_error" value="false"/><br> <parameter key="root_relative_squared_error" value="false"/><br> <parameter key="squared_error" value="false"/><br> <parameter key="correlation" value="false"/><br> <parameter key="squared_correlation" value="false"/><br> <parameter key="cross-entropy" value="false"/><br> <parameter key="margin" value="false"/><br> <parameter key="soft_margin_loss" value="false"/><br> <parameter key="logistic_loss" value="false"/><br> <parameter key="skip_undefined_labels" value="true"/><br> <parameter key="use_example_weights" value="true"/><br> <list key="class_weights"/><br> </operator><br> <connect from_port="input 1" to_op="Filter Examples" to_port="example set input"/><br> <connect from_op="Filter Examples" from_port="example set output" to_op="Select Attributes" to_port="example set input"/><br> <connect from_op="Filter Examples" from_port="unmatched example set" to_op="Select Attributes (2)" to_port="example set input"/><br> <connect from_op="Select Attributes (2)" from_port="example set output" to_op="Decision Tree" to_port="training set"/><br> <connect from_op="Decision Tree" from_port="model" to_op="Apply Model" to_port="model"/><br> <connect from_op="Select Attributes" from_port="example set output" to_op="Apply Model" to_port="unlabelled data"/><br> <connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/><br> <connect from_op="Performance" from_port="performance" to_port="output 1"/><br> <portSpacing port="source_input 1" spacing="0"/><br> <portSpacing port="source_input 2" spacing="0"/><br> <portSpacing port="sink_output 1" spacing="0"/><br> <portSpacing port="sink_output 2" spacing="0"/><br> </process><br> </operator><br> <operator activated="true" class="average" compatibility="9.2.000" expanded="true" height="82" name="Average" width="90" x="447" y="34"/><br> <connect from_op="Retrieve Titanic Training" from_port="output" to_op="Set Role" to_port="example set input"/><br> <connect from_op="Set Role" from_port="example set output" to_op="Loop Values" to_port="input 1"/><br> <connect from_op="Loop Values" from_port="output 1" to_op="Average" to_port="averagable 1"/><br> <connect from_op="Average" from_port="average" to_port="result 1"/><br> <portSpacing port="source_input 1" spacing="0"/><br> <portSpacing port="sink_result 1" spacing="0"/><br> <portSpacing port="sink_result 2" spacing="0"/><br> </process><br> </operator><br></process>