🎉Community Raffle - Win $25

An exclusive raffle opportunity for active members like you! Complete your profile, answer questions and get your first accepted badge to enter the raffle.
Join and Win

Multiple Labels for Binary Classification Problems in one model

User: "rodienne_zammit"
New Altair Community Member
Updated by Jocelyn
Hello,

sgenzer I read them to the end!

Current approach: Separate models for different binary labels
I have prepared a decision tree model which correctly predicts a binary label for product A when Product A is used as the label.

For product B, I re-run the process to train a similar model when B is the label.

Then I would need to train another model to predict product C, and use C as a label. This goes on as in reality I have more products.

Desired approach: One model to predict different binary labels
Is there a way I can combine this into one model so that the model can tell me the binary predictions (true/false) for Product A, B and C in one go? This would be ideal when applying the model on new data so that I don't need to run all separate product models. 

I tried to use "loop label" however this loops on the labels to create different models, and I did not find a way of how to use the models created to apply them to new data. I did not find a way how I could loop label on new data to apply "loop model" (this deosn't exist).

Maybe I could achieve this by combining the different binary classification values into one value? 

Appreciate feedback on how it is best to implement this problem.

Thank you!