least square deviation
hadiyaghoobi
New Altair Community Member
hello all.
How to calculate the output of the card decision tree algorithm with the least square deviation criterion?
Tagged:
0
Answers
-
Hi,You can use the operator "Decision Tree" for this. All you need to do is to change the parameter value for "criterion" to "least squares". The process below shows a simple example for this.More information about decision trees can be found here: https://academy.rapidminer.com/catalog?label=search&value=decision treesHope this helps,Ingo
<?xml version="1.0" encoding="UTF-8"?><process version="9.2.000"><br> <context><br> <input/><br> <output/><br> <macros/><br> </context><br> <operator activated="true" class="process" compatibility="9.2.000" expanded="true" name="Process"><br> <parameter key="logverbosity" value="init"/><br> <parameter key="random_seed" value="2001"/><br> <parameter key="send_mail" value="never"/><br> <parameter key="notification_email" value=""/><br> <parameter key="process_duration_for_mail" value="30"/><br> <parameter key="encoding" value="UTF-8"/><br> <process expanded="true"><br> <operator activated="true" class="retrieve" compatibility="9.2.000" expanded="true" height="68" name="Retrieve Polynomial" width="90" x="45" y="34"><br> <parameter key="repository_entry" value="//Samples/data/Polynomial"/><br> </operator><br> <operator activated="true" class="concurrency:parallel_decision_tree" compatibility="9.2.000" expanded="true" height="103" name="Decision Tree" width="90" x="179" y="34"><br> <parameter key="criterion" value="least_square"/><br> <parameter key="maximal_depth" value="10"/><br> <parameter key="apply_pruning" value="true"/><br> <parameter key="confidence" value="0.1"/><br> <parameter key="apply_prepruning" value="true"/><br> <parameter key="minimal_gain" value="0.01"/><br> <parameter key="minimal_leaf_size" value="2"/><br> <parameter key="minimal_size_for_split" value="4"/><br> <parameter key="number_of_prepruning_alternatives" value="3"/><br> </operator><br> <connect from_op="Retrieve Polynomial" from_port="output" to_op="Decision Tree" to_port="training set"/><br> <connect from_op="Decision Tree" from_port="model" to_port="result 1"/><br> <portSpacing port="source_input 1" spacing="0"/><br> <portSpacing port="sink_result 1" spacing="0"/><br> <portSpacing port="sink_result 2" spacing="0"/><br> </process><br> </operator><br></process><br>
2