"Can I get multiple predictions using Neural Network?"
I am trying to create a Neural Net that can predict more than one output. The training set is [0,0,0,0,a,a] and the predicted output must come from another input such as [0,0,0,0] and predict [a,a]. My program is currently working but it will only show the predicted output of the labeled column of choice. I wanted to know if there is a possibility of there been more than 1 output at the same time.
I already tried to use loop labels but to no success. Am I missing something? Thanks.
edit:This is the code
<?xml version="1.0" encoding="UTF-8"?><process version="9.1.000"> <context> <input/> <output/> <macros/> </context> <operator activated="true" class="process" compatibility="9.1.000" expanded="true" name="Process"> <parameter key="logverbosity" value="init"/> <parameter key="random_seed" value="2001"/> <parameter key="send_mail" value="never"/> <parameter key="notification_email" value=""/> <parameter key="process_duration_for_mail" value="30"/> <parameter key="encoding" value="SYSTEM"/> <process expanded="true"> <operator activated="true" class="retrieve" compatibility="9.1.000" expanded="true" height="68" name="Retrieve Testing Pls" width="90" x="45" y="34"> <parameter key="repository_entry" value="//Local Repository/data/Testing Pls"/> </operator> <operator activated="true" class="set_role" compatibility="9.1.000" expanded="true" height="82" name="Set Role" width="90" x="112" y="187"> <parameter key="attribute_name" value="b1"/> <parameter key="target_role" value="label"/> <list key="set_additional_roles"> <parameter key="b2" value="label"/> <parameter key="b3" value="label"/> </list> </operator> <operator activated="true" class="multiply" compatibility="9.1.000" expanded="true" height="103" name="Multiply" width="90" x="313" y="187"/> <operator activated="true" class="filter_examples" compatibility="9.1.000" expanded="true" height="103" name="Filter Examples (2)" width="90" x="514" y="238"> <parameter key="parameter_expression" value=""/> <parameter key="condition_class" value="custom_filters"/> <parameter key="invert_filter" value="false"/> <list key="filters_list"> <parameter key="filters_entry_key" value="b1.is_missing."/> <parameter key="filters_entry_key" value="b2.is_missing."/> <parameter key="filters_entry_key" value="b3.is_missing."/> </list> <parameter key="filters_logic_and" value="true"/> <parameter key="filters_check_metadata" value="true"/> </operator> <operator activated="true" class="filter_examples" compatibility="9.1.000" expanded="true" height="103" name="Filter Examples" width="90" x="447" y="34"> <parameter key="parameter_expression" value=""/> <parameter key="condition_class" value="custom_filters"/> <parameter key="invert_filter" value="false"/> <list key="filters_list"> <parameter key="filters_entry_key" value="b1.is_not_missing."/> <parameter key="filters_entry_key" value="b2.is_not_missing."/> <parameter key="filters_entry_key" value="b3.is_not_missing."/> </list> <parameter key="filters_logic_and" value="true"/> <parameter key="filters_check_metadata" value="true"/> </operator> <operator activated="true" class="neural_net" compatibility="9.1.000" expanded="true" height="82" name="Neural Net" width="90" x="581" y="34"> <list key="hidden_layers"> <parameter key="h1" value="4"/> </list> <parameter key="training_cycles" value="200"/> <parameter key="learning_rate" value="0.01"/> <parameter key="momentum" value="0.9"/> <parameter key="decay" value="false"/> <parameter key="shuffle" value="true"/> <parameter key="normalize" value="true"/> <parameter key="error_epsilon" value="1.0E-4"/> <parameter key="use_local_random_seed" value="false"/> <parameter key="local_random_seed" value="1992"/> </operator> <operator activated="true" class="apply_model" compatibility="9.1.000" expanded="true" height="82" name="Apply Model" width="90" x="715" y="136"> <list key="application_parameters"/> <parameter key="create_view" value="false"/> </operator> <connect from_op="Retrieve Testing Pls" from_port="output" to_op="Set Role" to_port="example set input"/> <connect from_op="Set Role" from_port="example set output" to_op="Multiply" to_port="input"/> <connect from_op="Multiply" from_port="output 1" to_op="Filter Examples" to_port="example set input"/> <connect from_op="Multiply" from_port="output 2" to_op="Filter Examples (2)" to_port="example set input"/> <connect from_op="Filter Examples (2)" from_port="example set output" to_op="Apply Model" to_port="unlabelled data"/> <connect from_op="Filter Examples" from_port="example set output" to_op="Neural Net" to_port="training set"/> <connect from_op="Neural Net" from_port="model" to_op="Apply Model" to_port="model"/> <connect from_op="Apply Model" from_port="labelled data" to_port="result 1"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="sink_result 1" spacing="0"/> <portSpacing port="sink_result 2" spacing="0"/> </process> </operator> </process>