🎉Community Raffle - Win $25

An exclusive raffle opportunity for active members like you! Complete your profile, answer questions and get your first accepted badge to enter the raffle.
Join and Win

"Comparing training and testing accuracy to check over-fitting."

User: "Avichandra"
New Altair Community Member
Updated by Jocelyn
<?xml version="1.0" encoding="UTF-8"?><process version="8.2.000">
<context>
<input/>
<output/>
<macros/>
</context>
<operator activated="true" class="process" compatibility="8.2.000" expanded="true" name="Process">
<parameter key="logverbosity" value="init"/>
<parameter key="random_seed" value="2001"/>
<parameter key="send_mail" value="never"/>
<parameter key="notification_email" value=""/>
<parameter key="process_duration_for_mail" value="30"/>
<parameter key="encoding" value="SYSTEM"/>
<process expanded="true">
<operator activated="true" class="retrieve" compatibility="8.2.000" expanded="true" height="68" name="Retrieve totalfludata20180511" width="90" x="45" y="238">
<parameter key="repository_entry" value="//Local Repository/totalfludata20180511"/>
</operator>
<operator activated="true" class="split_data" compatibility="8.2.000" expanded="true" height="103" name="Split Data" width="90" x="45" y="34">
<enumeration key="partitions">
<parameter key="ratio" value="0.8"/>
<parameter key="ratio" value="0.2"/>
</enumeration>
<parameter key="sampling_type" value="automatic"/>
<parameter key="use_local_random_seed" value="false"/>
<parameter key="local_random_seed" value="1992"/>
</operator>
<operator activated="true" class="select_attributes" compatibility="8.2.000" expanded="true" height="82" name="Select Attributes" width="90" x="246" y="187">
<parameter key="attribute_filter_type" value="subset"/>
<parameter key="attribute" value=""/>
<parameter key="attributes" value="year2017_18|year2016_17|year2015_16|wherereside.factor|weightlb|travel.factor|slaughter.factor|preg0nt.factor|pastmedreproductiveother.factor|pastmedreproductive.factor|pastmedre0ldisother.factor|pastmedre0ldisendstage.factor|pastmedre0ldis.factor|pastmedpcos.factor|pastmedothermed.factor|pastmedorgtransp.factor|pastmedneurodisstroke.factor|pastmedneurodisspi0lcord.factor|pastmedneurodisseizepilep.factor|pastmedneurodispnh.factor|pastmedneurodisother.factor|pastmedneurodisms.factor|pastmedneurodisintelldisab.factor|pastmedneurodiscp.factor|pastmedneurodis.factor|pastmedmetenddisthyroid.factor|pastmedmetenddisother.factor|pastmedmetenddisdiab.factor|pastmedmetenddis.factor|pastmedhivcd4.factor|pastmedhiv.factor|pastmedhepdisother.factor|pastmedhepdishepc.factor|pastmedhepdishepb.factor|pastmedhepdiscirr.factor|pastmedhepdis.factor|pastmedhemdissicklecell.factor|pastmedhemdisother.factor|pastmedhemdislymph.factor|pastmedhemdisleuk.factor|pastmedhemdis.factor|pastmedesld.factor|pastmedendomet.factor|pastmeddialysis.factor|pastmedcvdisvalvdis.factor|pastmedcvdisother.factor|pastmedcvdiscorartdis.factor|pastmedcvdiscongesthrtfail.factor|pastmedcvdiscongenhdis.factor|pastmedcvdiscardiomyop.factor|pastmedcvdis.factor|pastmedchronlundisother.factor|pastmedchronlundiscystfib.factor|pastmedchronlundiscopd.factor|pastmedchronlundisasth.factor|pastmedchronlundis.factor|pastmedcancerrad.factor|pastmedcancerchemo.factor|pastmedcancer.factor|pastmedautoimm.factor|menses.factor|medhistav.factor|largefarm.factor|heightin|gender.factor|foodprep.factor|fluvaccine_date.factor|fluvaccine.factor|flock.factor|farm.factor|exposure_swine.factor|exposure_poultry.factor|exposure_birds.factor|exposure.factor|exposeother.factor|exposehuman.factor|enrolling_site.factor|enrolldate|employed.factor|education.factor|edchrev_ab_ed.factor|cursympt_wheezing.factor|cursympt_stomachpain.factor|cursympt_sorethroat.factor|cursympt_sinuspain.factor|cursympt_shortnessbreath.factor|cursympt_shakingchills.factor|cursympt_rhinorrhea.factor|cursympt_other.factor|cursympt_incrsputum.factor|cursympt_headache.factor|cursympt_getoutofbed.factor|cursympt_fever.factor|cursympt_fatigue.factor|cursympt_diarrhea.factor|cursympt_coughsputum.factor|cursympt_cough.factor|cursympt_conjunctivitis.factor|cursympt_chestpain.factor|cursympt_chesthurt.factor|cursympt_bodyaches.factor|cursympt_appetite.factor|cursympt_0usea.factor|curmedsteroids.factor|curmedimmunosupsp___4.factor|curmedimmunosupsp___3.factor|curmedimmunosupsp___2.factor|curmedimmunosupsp___1.factor|curmedimmunosup.factor|breastfeeding.factor|bcmethod.factor|age|admit.factor|H3|H1|B"/>
<parameter key="use_except_expression" value="false"/>
<parameter key="value_type" value="attribute_value"/>
<parameter key="use_value_type_exception" value="false"/>
<parameter key="except_value_type" value="time"/>
<parameter key="block_type" value="attribute_block"/>
<parameter key="use_block_type_exception" value="false"/>
<parameter key="except_block_type" value="value_matrix_row_start"/>
<parameter key="invert_selection" value="false"/>
<parameter key="include_special_attributes" value="false"/>
</operator>
<operator activated="true" class="set_role" compatibility="8.2.000" expanded="true" height="82" name="Set Role" width="90" x="179" y="34">
<parameter key="attribute_name" value="GeneXpert"/>
<parameter key="target_role" value="label"/>
<list key="set_additional_roles"/>
</operator>
<operator activated="true" class="split_validation" compatibility="8.2.000" expanded="true" height="124" name="Validation" width="90" x="313" y="34">
<parameter key="create_complete_model" value="false"/>
<parameter key="split" value="relative"/>
<parameter key="split_ratio" value="0.7"/>
<parameter key="training_set_size" value="100"/>
<parameter key="test_set_size" value="-1"/>
<parameter key="sampling_type" value="automatic"/>
<parameter key="use_local_random_seed" value="false"/>
<parameter key="local_random_seed" value="1992"/>
<process expanded="true">
<operator activated="true" class="concurrency:parallel_random_forest" compatibility="8.2.000" expanded="true" height="103" name="Random Forest" width="90" x="112" y="34">
<parameter key="number_of_trees" value="10"/>
<parameter key="criterion" value="gain_ratio"/>
<parameter key="maximal_depth" value="20"/>
<parameter key="apply_pruning" value="true"/>
<parameter key="confidence" value="0.25"/>
<parameter key="apply_prepruning" value="true"/>
<parameter key="minimal_gain" value="0.1"/>
<parameter key="minimal_leaf_size" value="2"/>
<parameter key="minimal_size_for_split" value="4"/>
<parameter key="number_of_prepruning_alternatives" value="3"/>
<parameter key="random_splits" value="false"/>
<parameter key="guess_subset_ratio" value="true"/>
<parameter key="subset_ratio" value="0.2"/>
<parameter key="voting_strategy" value="confidence vote"/>
<parameter key="use_local_random_seed" value="false"/>
<parameter key="local_random_seed" value="1992"/>
<parameter key="enable_parallel_execution" value="true"/>
</operator>
<connect from_port="training" to_op="Random Forest" to_port="training set"/>
<connect from_op="Random Forest" from_port="model" to_port="model"/>
<portSpacing port="source_training" spacing="0"/>
<portSpacing port="sink_model" spacing="0"/>
<portSpacing port="sink_through 1" spacing="0"/>
</process>
<process expanded="true">
<operator activated="true" class="apply_model" compatibility="8.2.000" expanded="true" height="82" name="Apply Model (2)" width="90" x="45" y="34">
<list key="application_parameters"/>
<parameter key="create_view" value="false"/>
</operator>
<operator activated="true" class="performance" compatibility="8.2.000" expanded="true" height="82" name="Performance" width="90" x="179" y="34">
<parameter key="use_example_weights" value="true"/>
</operator>
<connect from_port="model" to_op="Apply Model (2)" to_port="model"/>
<connect from_port="test set" to_op="Apply Model (2)" to_port="unlabelled data"/>
<connect from_op="Apply Model (2)" from_port="labelled data" to_op="Performance" to_port="labelled data"/>
<connect from_op="Performance" from_port="performance" to_port="averagable 1"/>
<portSpacing port="source_model" spacing="0"/>
<portSpacing port="source_test set" spacing="0"/>
<portSpacing port="source_through 1" spacing="0"/>
<portSpacing port="sink_averagable 1" spacing="0"/>
<portSpacing port="sink_averagable 2" spacing="0"/>
</process>
</operator>
<operator activated="true" class="apply_model" compatibility="8.2.000" expanded="true" height="82" name="Apply Model" width="90" x="447" y="136">
<list key="application_parameters"/>
<parameter key="create_view" value="false"/>
</operator>
<connect from_op="Retrieve totalfludata20180511" from_port="output" to_op="Split Data" to_port="example set"/>
<connect from_op="Split Data" from_port="partition 1" to_op="Set Role" to_port="example set input"/>
<connect from_op="Split Data" from_port="partition 2" to_op="Select Attributes" to_port="example set input"/>
<connect from_op="Select Attributes" from_port="example set output" to_op="Apply Model" to_port="unlabelled data"/>
<connect from_op="Set Role" from_port="example set output" to_op="Validation" to_port="training"/>
<connect from_op="Validation" from_port="model" to_op="Apply Model" to_port="model"/>
<connect from_op="Validation" from_port="averagable 1" to_port="result 1"/>
<connect from_op="Apply Model" from_port="labelled data" to_port="result 2"/>
<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="sink_result 1" spacing="0"/>
<portSpacing port="sink_result 2" spacing="0"/>
<portSpacing port="sink_result 3" spacing="0"/>
</process>
</operator>
</process>

I have designed a random forest classification model with splitting the dataset into training and testing in a ratio of 0.8:0.2. I have validated the model. I got accuracy for the testing dataset. I want to check the over-fitting problem of my model. So, I want to compare accuracy for both training and testing data set. How to retrieve accuracy for both training and testing dataset from my model. 

Find more posts tagged with