Hello,
i work actually at a data set for a decision tree solution inspired from your video "finding the right model".
The roc based on the data set shows me a good result for decision tree and random forest.
But when i want to create a simple decision tree model i get a very low recall of 1,12% for TruePositiv.
With Optimize Parameters i can increase it to 47% for TruePositiv.
But i see in documentations, that a TruePositiv of 99% is possible.
Is something wrong with my process?
The XML-Code:
<?xml version="1.0" encoding="UTF-8"?><process version="8.2.000">
<context>
<input/>
<output/>
<macros/>
</context>
<operator activated="true" class="process" compatibility="8.2.000" expanded="true" name="Process">
<process expanded="true">
<operator activated="true" class="retrieve" compatibility="8.2.000" expanded="true" height="68" name="Retrieve transfusion.dataset1" width="90" x="45" y="34">
<parameter key="repository_entry" value="../data/transfusion.dataset1"/>
</operator>
<operator activated="true" class="rename" compatibility="8.2.000" expanded="true" height="82" name="Rename" width="90" x="179" y="34">
<parameter key="old_name" value="whether he/she donated blood in March 2007"/>
<parameter key="new_name" value="Donation"/>
<list key="rename_additional_attributes">
<parameter key="Frequency (times)" value="Frequency"/>
<parameter key="Monetary (c.c. blood)" value="Monetary"/>
<parameter key="Recency (months)" value="Recency"/>
<parameter key="Time (months)" value="Time"/>
<parameter key="ID (customer)" value="ID"/>
</list>
</operator>
<operator activated="true" class="numerical_to_binominal" compatibility="8.2.000" expanded="true" height="82" name="Numerical to Binominal" width="90" x="313" y="34">
<parameter key="attribute_filter_type" value="single"/>
<parameter key="attribute" value="Donation"/>
</operator>
<operator activated="true" class="set_role" compatibility="8.2.000" expanded="true" height="82" name="Set Role" width="90" x="447" y="34">
<parameter key="attribute_name" value="Donation"/>
<parameter key="target_role" value="label"/>
<list key="set_additional_roles">
<parameter key="ID" value="id"/>
<parameter key="Frequency" value="regular"/>
<parameter key="Monetary" value="regular"/>
<parameter key="Recency" value="regular"/>
<parameter key="Time" value="regular"/>
</list>
</operator>
<operator activated="true" class="select_attributes" compatibility="8.2.000" expanded="true" height="82" name="Select Attributes" width="90" x="581" y="34">
<parameter key="attribute_filter_type" value="subset"/>
<parameter key="attributes" value="Donation|Frequency|Recency|Time|Monetary"/>
<parameter key="include_special_attributes" value="true"/>
</operator>
<operator activated="true" class="multiply" compatibility="8.2.000" expanded="true" height="124" name="Multiply (2)" width="90" x="715" y="34"/>
<operator activated="true" class="concurrency:optimize_parameters_grid" compatibility="8.2.000" expanded="true" height="124" name="DT Optimize Parameters" width="90" x="849" y="289">
<list key="parameters">
<parameter key="Decision Tree (2).criterion" value="gini_index"/>
<parameter key="Decision Tree (2).maximal_depth" value="[15;30;15;linear]"/>
<parameter key="Decision Tree (2).minimal_gain" value="[0.040;0.050;10;linear]"/>
<parameter key="Decision Tree (2).apply_prepruning" value="true"/>
<parameter key="Decision Tree (2).minimal_size_for_split" value="[5;10;6;linear]"/>
<parameter key="Decision Tree (2).number_of_prepruning_alternatives" value="[10;15;5;linear]"/>
</list>
<parameter key="log_all_criteria" value="true"/>
<process expanded="true">
<operator activated="true" class="concurrency:cross_validation" compatibility="8.2.000" expanded="true" height="145" name="DT Cross Validation (2)" width="90" x="45" y="34">
<process expanded="true">
<operator activated="true" class="concurrency:parallel_decision_tree" compatibility="8.2.000" expanded="true" height="103" name="Decision Tree (2)" width="90" x="112" y="34">
<parameter key="criterion" value="gini_index"/>
</operator>
<connect from_port="training set" to_op="Decision Tree (2)" to_port="training set"/>
<connect from_op="Decision Tree (2)" from_port="model" to_port="model"/>
<portSpacing port="source_training set" spacing="0"/>
<portSpacing port="sink_model" spacing="0"/>
<portSpacing port="sink_through 1" spacing="0"/>
</process>
<process expanded="true">
<operator activated="true" class="apply_model" compatibility="8.2.000" expanded="true" height="82" name="Apply Model (4)" width="90" x="112" y="34">
<list key="application_parameters"/>
</operator>
<operator activated="true" class="performance_binominal_classification" compatibility="8.2.000" expanded="true" height="82" name="Performance (4)" width="90" x="246" y="34">
<parameter key="main_criterion" value="recall"/>
<parameter key="AUC (optimistic)" value="true"/>
<parameter key="AUC" value="true"/>
<parameter key="AUC (pessimistic)" value="true"/>
<parameter key="precision" value="true"/>
<parameter key="recall" value="true"/>
</operator>
<connect from_port="model" to_op="Apply Model (4)" to_port="model"/>
<connect from_port="test set" to_op="Apply Model (4)" to_port="unlabelled data"/>
<connect from_op="Apply Model (4)" from_port="labelled data" to_op="Performance (4)" to_port="labelled data"/>
<connect from_op="Performance (4)" from_port="performance" to_port="performance 1"/>
<portSpacing port="source_model" spacing="0"/>
<portSpacing port="source_test set" spacing="0"/>
<portSpacing port="source_through 1" spacing="0"/>
<portSpacing port="sink_test set results" spacing="0"/>
<portSpacing port="sink_performance 1" spacing="0"/>
<portSpacing port="sink_performance 2" spacing="0"/>
</process>
</operator>
<connect from_port="input 1" to_op="DT Cross Validation (2)" to_port="example set"/>
<connect from_op="DT Cross Validation (2)" from_port="model" to_port="model"/>
<connect from_op="DT Cross Validation (2)" from_port="performance 1" to_port="performance"/>
<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="source_input 2" spacing="0"/>
<portSpacing port="sink_performance" spacing="0"/>
<portSpacing port="sink_model" spacing="0"/>
<portSpacing port="sink_output 1" spacing="0"/>
</process>
</operator>
<operator activated="true" class="concurrency:cross_validation" compatibility="8.2.000" expanded="true" height="145" name="Cross Validation" width="90" x="849" y="136">
<process expanded="true">
<operator activated="true" class="concurrency:parallel_decision_tree" compatibility="8.2.000" expanded="true" height="103" name="Decision Tree" width="90" x="112" y="34"/>
<connect from_port="training set" to_op="Decision Tree" to_port="training set"/>
<connect from_op="Decision Tree" from_port="model" to_port="model"/>
<portSpacing port="source_training set" spacing="0"/>
<portSpacing port="sink_model" spacing="0"/>
<portSpacing port="sink_through 1" spacing="0"/>
</process>
<process expanded="true">
<operator activated="true" class="apply_model" compatibility="8.2.000" expanded="true" height="82" name="Apply Model" width="90" x="112" y="34">
<list key="application_parameters"/>
</operator>
<operator activated="true" class="performance_binominal_classification" compatibility="8.2.000" expanded="true" height="82" name="Performance" width="90" x="246" y="34">
<parameter key="main_criterion" value="recall"/>
<parameter key="precision" value="true"/>
<parameter key="recall" value="true"/>
</operator>
<connect from_port="model" to_op="Apply Model" to_port="model"/>
<connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/>
<connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/>
<connect from_op="Performance" from_port="performance" to_port="performance 1"/>
<portSpacing port="source_model" spacing="0"/>
<portSpacing port="source_test set" spacing="0"/>
<portSpacing port="source_through 1" spacing="0"/>
<portSpacing port="sink_test set results" spacing="0"/>
<portSpacing port="sink_performance 1" spacing="0"/>
<portSpacing port="sink_performance 2" spacing="0"/>
</process>
</operator>
<operator activated="true" class="compare_rocs" compatibility="8.2.000" expanded="true" height="82" name="Compare ROCs (3)" width="90" x="849" y="34">
<parameter key="sampling_type" value="automatic"/>
<parameter key="use_example_weights" value="false"/>
<process expanded="true">
<operator activated="true" class="concurrency:parallel_decision_tree" compatibility="8.2.000" expanded="true" height="103" name="Decision Tree (5)" width="90" x="447" y="34"/>
<operator activated="true" class="naive_bayes" compatibility="8.2.000" expanded="true" height="82" name="Naive Bayes (3)" width="90" x="447" y="136"/>
<operator activated="true" class="rule_induction" compatibility="8.2.000" expanded="true" height="82" name="Rule Induction (3)" width="90" x="447" y="238"/>
<operator activated="true" class="random_tree" compatibility="8.2.000" expanded="true" height="82" name="Random Tree (3)" width="90" x="447" y="340"/>
<operator activated="true" class="k_nn" compatibility="8.2.000" expanded="true" height="82" name="k-NN (5)" width="90" x="447" y="442"/>
<connect from_port="train 1" to_op="Decision Tree (5)" to_port="training set"/>
<connect from_port="train 2" to_op="Naive Bayes (3)" to_port="training set"/>
<connect from_port="train 3" to_op="Rule Induction (3)" to_port="training set"/>
<connect from_port="train 4" to_op="Random Tree (3)" to_port="training set"/>
<connect from_port="train 5" to_op="k-NN (5)" to_port="training set"/>
<connect from_op="Decision Tree (5)" from_port="model" to_port="model 1"/>
<connect from_op="Naive Bayes (3)" from_port="model" to_port="model 2"/>
<connect from_op="Rule Induction (3)" from_port="model" to_port="model 3"/>
<connect from_op="Random Tree (3)" from_port="model" to_port="model 4"/>
<connect from_op="k-NN (5)" from_port="model" to_port="model 5"/>
<portSpacing port="source_train 1" spacing="0"/>
<portSpacing port="source_train 2" spacing="0"/>
<portSpacing port="source_train 3" spacing="0"/>
<portSpacing port="source_train 4" spacing="0"/>
<portSpacing port="source_train 5" spacing="0"/>
<portSpacing port="source_train 6" spacing="0"/>
<portSpacing port="sink_model 1" spacing="0"/>
<portSpacing port="sink_model 2" spacing="0"/>
<portSpacing port="sink_model 3" spacing="0"/>
<portSpacing port="sink_model 4" spacing="0"/>
<portSpacing port="sink_model 5" spacing="0"/>
<portSpacing port="sink_model 6" spacing="0"/>
</process>
</operator>
<connect from_op="Retrieve transfusion.dataset1" from_port="output" to_op="Rename" to_port="example set input"/>
<connect from_op="Rename" from_port="example set output" to_op="Numerical to Binominal" to_port="example set input"/>
<connect from_op="Numerical to Binominal" from_port="example set output" to_op="Set Role" to_port="example set input"/>
<connect from_op="Set Role" from_port="example set output" to_op="Select Attributes" to_port="example set input"/>
<connect from_op="Select Attributes" from_port="example set output" to_op="Multiply (2)" to_port="input"/>
<connect from_op="Multiply (2)" from_port="output 1" to_op="Compare ROCs (3)" to_port="example set"/>
<connect from_op="Multiply (2)" from_port="output 2" to_op="Cross Validation" to_port="example set"/>
<connect from_op="Multiply (2)" from_port="output 3" to_op="DT Optimize Parameters" to_port="input 1"/>
<connect from_op="DT Optimize Parameters" from_port="performance" to_port="result 4"/>
<connect from_op="DT Optimize Parameters" from_port="model" to_port="result 5"/>
<connect from_op="Cross Validation" from_port="model" to_port="result 2"/>
<connect from_op="Cross Validation" from_port="performance 1" to_port="result 3"/>
<connect from_op="Compare ROCs (3)" from_port="rocComparison" to_port="result 1"/>
<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="sink_result 1" spacing="0"/>
<portSpacing port="sink_result 2" spacing="0"/>
<portSpacing port="sink_result 3" spacing="0"/>
<portSpacing port="sink_result 4" spacing="0"/>
<portSpacing port="sink_result 5" spacing="0"/>
<portSpacing port="sink_result 6" spacing="0"/>
</process>
</operator>
</process>
