Hello,
I am in trouble. I have already made the procces producing a ROC curve as it is described above. My problem is that I would like to compare ROC curves that come from diferent machine learning algorithms. In other words I would like to compare all the ROCs in one graph.
<?xml version="1.0" encoding="UTF-8"?><process version="7.5.001">
<context>
<input/>
<output/>
<macros/>
</context>
<operator activated="true" class="process" compatibility="7.5.001" expanded="true" name="Process">
<process expanded="true">
<operator activated="false" class="performance_classification" compatibility="7.5.001" expanded="true" height="82" name="Performance (3)" width="90" x="849" y="544">
<list key="class_weights"/>
</operator>
<operator activated="true" class="retrieve" compatibility="7.5.001" expanded="true" height="68" name="Retrieve acutal training binominal-real data" width="90" x="45" y="85">
<parameter key="repository_entry" value="data/acutal training binominal-real data"/>
</operator>
<operator activated="true" class="set_role" compatibility="7.5.001" expanded="true" height="82" name="Set Role" width="90" x="179" y="85">
<parameter key="attribute_name" value="Total definition"/>
<parameter key="target_role" value="label"/>
<list key="set_additional_roles"/>
</operator>
<operator activated="false" class="h2o:logistic_regression" compatibility="7.5.000" expanded="true" height="103" name="Logistic Regression (3)" width="90" x="313" y="85"/>
<operator activated="false" class="naive_bayes" compatibility="7.5.001" expanded="true" height="82" name="Naive Bayes (3)" width="90" x="246" y="595"/>
<operator activated="true" class="neural_net" compatibility="7.5.001" expanded="true" height="82" name="Neural Net (3)" width="90" x="380" y="493">
<list key="hidden_layers"/>
</operator>
<operator activated="false" class="concurrency:parallel_random_forest" compatibility="7.5.001" expanded="true" height="82" name="Random Forest (2)" width="90" x="514" y="493">
<parameter key="number_of_trees" value="15"/>
<parameter key="criterion" value="information_gain"/>
<parameter key="minimal_gain" value="0.0"/>
</operator>
<operator activated="false" class="concurrency:parallel_decision_tree" compatibility="7.5.001" expanded="true" height="82" name="Decision Tree (3)" width="90" x="514" y="391">
<parameter key="criterion" value="information_gain"/>
<parameter key="minimal_gain" value="0.0"/>
</operator>
<operator activated="false" class="k_nn" compatibility="7.5.001" expanded="true" height="82" name="k-NN (2)" width="90" x="246" y="391">
<parameter key="k" value="8"/>
<parameter key="measure_types" value="NumericalMeasures"/>
<parameter key="numerical_measure" value="CamberraDistance"/>
<parameter key="kernel_type" value="polynomial"/>
</operator>
<operator activated="false" class="concurrency:cross_validation" compatibility="7.5.001" expanded="true" height="145" name="Cross Validation" width="90" x="715" y="442">
<parameter key="sampling_type" value="stratified sampling"/>
<process expanded="true">
<operator activated="false" class="support_vector_machine_libsvm" compatibility="7.5.001" expanded="true" height="82" name="SVM" width="90" x="179" y="34">
<parameter key="kernel_type" value="linear"/>
<list key="class_weights"/>
<parameter key="calculate_confidences" value="true"/>
</operator>
<operator activated="false" class="h2o:deep_learning" compatibility="7.5.000" expanded="true" height="82" name="Deep Learning" width="90" x="45" y="340">
<enumeration key="hidden_layer_sizes">
<parameter key="hidden_layer_sizes" value="50"/>
<parameter key="hidden_layer_sizes" value="50"/>
</enumeration>
<enumeration key="hidden_dropout_ratios"/>
<list key="expert_parameters"/>
<list key="expert_parameters_"/>
</operator>
<operator activated="true" class="h2o:logistic_regression" compatibility="7.5.000" expanded="true" height="103" name="Logistic Regression" width="90" x="179" y="238">
<parameter key="solver" value="IRLSM"/>
<parameter key="missing_values_handling" value="Skip"/>
</operator>
<operator activated="false" class="concurrency:parallel_decision_tree" compatibility="7.5.001" expanded="true" height="82" name="Decision Tree" width="90" x="313" y="238">
<parameter key="criterion" value="gini_index"/>
<parameter key="minimal_gain" value="0.0"/>
</operator>
<operator activated="false" class="neural_net" compatibility="7.5.001" expanded="true" height="82" name="Neural Net" width="90" x="179" y="340">
<list key="hidden_layers"/>
</operator>
<operator activated="false" class="naive_bayes" compatibility="7.5.001" expanded="true" height="82" name="Naive Bayes" width="90" x="45" y="442"/>
<operator activated="false" class="k_nn" compatibility="7.5.001" expanded="true" height="82" name="k-NN" width="90" x="45" y="238">
<parameter key="k" value="15"/>
<parameter key="measure_types" value="NumericalMeasures"/>
</operator>
<operator activated="false" class="concurrency:parallel_random_forest" compatibility="7.5.001" expanded="true" height="82" name="Random Forest" width="90" x="313" y="340"/>
<operator activated="false" class="random_tree" compatibility="7.5.001" expanded="true" height="82" name="Random Tree" width="90" x="313" y="442"/>
<connect from_port="training set" to_op="Logistic Regression" to_port="training set"/>
<connect from_op="Logistic Regression" from_port="model" to_port="model"/>
<portSpacing port="source_training set" spacing="0"/>
<portSpacing port="sink_model" spacing="0"/>
<portSpacing port="sink_through 1" spacing="0"/>
</process>
<process expanded="true">
<operator activated="true" class="apply_model" compatibility="7.5.001" expanded="true" height="82" name="Apply Model" width="90" x="112" y="34">
<list key="application_parameters"/>
</operator>
<operator activated="true" class="performance_binominal_classification" compatibility="7.5.001" expanded="true" height="82" name="Performance (4)" width="90" x="313" y="34">
<parameter key="main_criterion" value="AUC"/>
<parameter key="AUC" value="true"/>
<parameter key="skip_undefined_labels" value="false"/>
</operator>
<operator activated="false" class="performance_support_vector_count" compatibility="7.5.001" expanded="true" height="82" name="Performance (2)" width="90" x="313" y="187"/>
<connect from_port="model" to_op="Apply Model" to_port="model"/>
<connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/>
<connect from_op="Apply Model" from_port="labelled data" to_op="Performance (4)" to_port="labelled data"/>
<connect from_op="Performance (4)" from_port="performance" to_port="performance 1"/>
<portSpacing port="source_model" spacing="0"/>
<portSpacing port="source_test set" spacing="0"/>
<portSpacing port="source_through 1" spacing="0"/>
<portSpacing port="sink_test set results" spacing="0"/>
<portSpacing port="sink_performance 1" spacing="0"/>
<portSpacing port="sink_performance 2" spacing="0"/>
</process>
</operator>
<operator activated="true" class="retrieve" compatibility="7.5.001" expanded="true" height="68" name="Retrieve acutal testing binominal real data" width="90" x="45" y="238">
<parameter key="repository_entry" value="data/acutal testing binominal real data"/>
</operator>
<operator activated="true" class="set_role" compatibility="7.5.001" expanded="true" height="82" name="Set Role (2)" width="90" x="179" y="238">
<parameter key="attribute_name" value="Total definition"/>
<parameter key="target_role" value="label"/>
<list key="set_additional_roles"/>
</operator>
<operator activated="false" class="support_vector_machine_libsvm" compatibility="7.5.001" expanded="true" height="82" name="SVM (2)" width="90" x="380" y="595">
<parameter key="kernel_type" value="linear"/>
<list key="class_weights"/>
<parameter key="calculate_confidences" value="true"/>
</operator>
<operator activated="false" class="h2o:deep_learning" compatibility="7.5.000" expanded="true" height="82" name="Deep Learning (2)" width="90" x="246" y="493">
<enumeration key="hidden_layer_sizes">
<parameter key="hidden_layer_sizes" value="50"/>
<parameter key="hidden_layer_sizes" value="50"/>
</enumeration>
<enumeration key="hidden_dropout_ratios"/>
<list key="expert_parameters"/>
<list key="expert_parameters_"/>
</operator>
<operator activated="false" class="random_tree" compatibility="7.5.001" expanded="true" height="82" name="Random Tree (2)" width="90" x="514" y="595"/>
<operator activated="true" class="apply_model" compatibility="7.5.001" expanded="true" height="82" name="Apply Model (2)" width="90" x="514" y="187">
<list key="application_parameters"/>
</operator>
<operator activated="true" class="performance_binominal_classification" compatibility="7.5.001" expanded="true" height="82" name="Performance" width="90" x="648" y="85">
<parameter key="main_criterion" value="AUC"/>
<parameter key="AUC" value="true"/>
<parameter key="skip_undefined_labels" value="false"/>
</operator>
<connect from_op="Retrieve acutal training binominal-real data" from_port="output" to_op="Set Role" to_port="example set input"/>
<connect from_op="Set Role" from_port="example set output" to_op="Neural Net (3)" to_port="training set"/>
<connect from_op="Neural Net (3)" from_port="model" to_op="Apply Model (2)" to_port="model"/>
<connect from_op="Retrieve acutal testing binominal real data" from_port="output" to_op="Set Role (2)" to_port="example set input"/>
<connect from_op="Set Role (2)" from_port="example set output" to_op="Apply Model (2)" to_port="unlabelled data"/>
<connect from_op="Apply Model (2)" from_port="labelled data" to_op="Performance" to_port="labelled data"/>
<connect from_op="Apply Model (2)" from_port="model" to_port="result 1"/>
<connect from_op="Performance" from_port="performance" to_port="result 2"/>
<connect from_op="Performance" from_port="example set" to_port="result 3"/>
<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="sink_result 1" spacing="0"/>
<portSpacing port="sink_result 2" spacing="0"/>
<portSpacing port="sink_result 3" spacing="0"/>
<portSpacing port="sink_result 4" spacing="0"/>
</process>
</operator>
</process>
Is there any idea?