Which are the most important parameters to tune for k-NN, NB, RF, DL, SVM for text classification?
Dear community,
I would like to compare the performance of the following five algorithms on different text classification tasks*:
- k-Nearest Neighbors (k-NN)
- Naive Bayes (NB)
- Random Forest (RF)
- Deep Learning (DL)
- Support Vector Machines (SVM)
Question 1: Which paramesters are the most important to optimize for each method 1-5?
Question 2: What ranges should I give those parameters in the parameter optimization operator in order to avoid "boiling the ocean"?
Thanks in advance!
* each task has between 3 to 5 classes and the text length varies between 3 to 70 words per document / example