🎉Community Raffle - Win $25

An exclusive raffle opportunity for active members like you! Complete your profile, answer questions and get your first accepted badge to enter the raffle.
Join and Win

Imputing Nulls using Grouped by values

User: "garg2409"
New Altair Community Member
Updated by Jocelyn

Hello Community,

Can we impute Null values with Grouped by some column of Non Null Values?

Eg : In titanic problem, I want to impute Age column with the mean age grouped by Sex. Now, this logic can be as complex as we want. Is there a functionality in RM to write our own rules for imputing Nulls?

P.S. I have seen the Imputing Missing Values operator. KNN may not work for all cases so we may need custom rules.

Thanks :)

Find more posts tagged with

Sort by:
1 - 1 of 11
    User: "MartinLiebig"
    Altair Employee
    Accepted Answer

    Hi,

    what about loop values, filter example, replace missings? :)

     

     Edit: a quicker way uses Aggregate and join. An example is attached.

     

    ~Martin

     

    <?xml version="1.0" encoding="UTF-8"?><process version="7.3.001">
    <context>
    <input/>
    <output/>
    <macros/>
    </context>
    <operator activated="true" class="process" compatibility="7.3.001" expanded="true" name="Process">
    <process expanded="true">
    <operator activated="true" class="retrieve" compatibility="7.3.001" expanded="true" height="68" name="Retrieve Titanic" width="90" x="112" y="136">
    <parameter key="repository_entry" value="//Samples/data/Titanic"/>
    </operator>
    <operator activated="true" class="multiply" compatibility="7.3.001" expanded="true" height="103" name="Multiply" width="90" x="246" y="136"/>
    <operator activated="true" class="aggregate" compatibility="7.3.001" expanded="true" height="82" name="Aggregate" width="90" x="380" y="34">
    <list key="aggregation_attributes">
    <parameter key="Age" value="average"/>
    </list>
    <parameter key="group_by_attributes" value="Sex"/>
    </operator>
    <operator activated="true" class="join" compatibility="7.3.001" expanded="true" height="82" name="Join" width="90" x="581" y="136">
    <parameter key="join_type" value="right"/>
    <parameter key="use_id_attribute_as_key" value="false"/>
    <list key="key_attributes">
    <parameter key="Sex" value="Sex"/>
    </list>
    </operator>
    <operator activated="true" class="generate_attributes" compatibility="7.3.001" expanded="true" height="82" name="Generate Attributes" width="90" x="715" y="136">
    <list key="function_descriptions">
    <parameter key="Age" value="if(missing(Age),[average(Age)],Age)"/>
    </list>
    </operator>
    <operator activated="true" class="select_attributes" compatibility="7.3.001" expanded="true" height="82" name="Select Attributes" width="90" x="916" y="136">
    <parameter key="attribute_filter_type" value="single"/>
    <parameter key="attribute" value="average(Age)"/>
    <parameter key="invert_selection" value="true"/>
    </operator>
    <connect from_op="Retrieve Titanic" from_port="output" to_op="Multiply" to_port="input"/>
    <connect from_op="Multiply" from_port="output 1" to_op="Aggregate" to_port="example set input"/>
    <connect from_op="Multiply" from_port="output 2" to_op="Join" to_port="right"/>
    <connect from_op="Aggregate" from_port="example set output" to_op="Join" to_port="left"/>
    <connect from_op="Join" from_port="join" to_op="Generate Attributes" to_port="example set input"/>
    <connect from_op="Generate Attributes" from_port="example set output" to_op="Select Attributes" to_port="example set input"/>
    <connect from_op="Select Attributes" from_port="example set output" to_port="result 1"/>
    <portSpacing port="source_input 1" spacing="0"/>
    <portSpacing port="sink_result 1" spacing="0"/>
    <portSpacing port="sink_result 2" spacing="0"/>
    </process>
    </operator>
    </process>