NeuralNet Polynomial not supported
yanika1716
New Altair Community Member
Hi there !
I have a dataset (excel format) on which I want to run the neural net algorithm but I am getting this error mesage;
"The operator NeuralNet does not have sufficient capabilities for the given data set; polynomial attributes not supported"
Can anyone help me with this?
Thanks!
I have a dataset (excel format) on which I want to run the neural net algorithm but I am getting this error mesage;
"The operator NeuralNet does not have sufficient capabilities for the given data set; polynomial attributes not supported"
Can anyone help me with this?
Thanks!
Tagged:
0
Answers
-
Hello yanika,
The Neural Net operator can only work on numerical values. So usually you convert the polynominal values to numerical values just including 1's and 0's
Before you had something like
MyCategory
Cat1
Cat2
Afterwards you have
MyCategory=Cat1 MyCategory=Cat2
1 0
0 1
The converting operator is Nominal to Numerical. Be careful using it. You might get hundrets of attributes
Here is an example process:
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<process version="6.2.000">
<context>
<input/>
<output/>
<macros/>
</context>
<operator activated="true" class="process" compatibility="6.2.000" expanded="true" name="Process">
<process expanded="true">
<operator activated="true" class="retrieve" compatibility="6.2.000" expanded="true" height="60" name="Retrieve Golf" width="90" x="45" y="75">
<parameter key="repository_entry" value="//Samples/data/Golf"/>
</operator>
<operator activated="true" class="nominal_to_numerical" compatibility="6.2.000" expanded="true" height="94" name="Nominal to Numerical" width="90" x="179" y="75">
<list key="comparison_groups"/>
</operator>
<operator activated="true" class="x_validation" compatibility="5.0.000" expanded="true" height="112" name="Validation" width="90" x="313" y="75">
<description>A cross-validation evaluating a decision tree model.</description>
<process expanded="true">
<operator activated="true" class="neural_net" compatibility="6.2.000" expanded="true" height="76" name="Neural Net" width="90" x="112" y="120">
<list key="hidden_layers"/>
</operator>
<connect from_port="training" to_op="Neural Net" to_port="training set"/>
<connect from_op="Neural Net" from_port="model" to_port="model"/>
<portSpacing port="source_training" spacing="0"/>
<portSpacing port="sink_model" spacing="0"/>
<portSpacing port="sink_through 1" spacing="0"/>
</process>
<process expanded="true">
<operator activated="true" class="apply_model" compatibility="5.0.000" expanded="true" height="76" name="Apply Model" width="90" x="45" y="30">
<list key="application_parameters"/>
</operator>
<operator activated="true" class="performance" compatibility="5.0.000" expanded="true" height="76" name="Performance" width="90" x="179" y="30"/>
<connect from_port="model" to_op="Apply Model" to_port="model"/>
<connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/>
<connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/>
<connect from_op="Performance" from_port="performance" to_port="averagable 1"/>
<portSpacing port="source_model" spacing="0"/>
<portSpacing port="source_test set" spacing="0"/>
<portSpacing port="source_through 1" spacing="0"/>
<portSpacing port="sink_averagable 1" spacing="0"/>
<portSpacing port="sink_averagable 2" spacing="0"/>
</process>
</operator>
<connect from_op="Retrieve Golf" from_port="output" to_op="Nominal to Numerical" to_port="example set input"/>
<connect from_op="Nominal to Numerical" from_port="example set output" to_op="Validation" to_port="training"/>
<connect from_op="Validation" from_port="averagable 1" to_port="result 1"/>
<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="sink_result 1" spacing="0"/>
<portSpacing port="sink_result 2" spacing="0"/>
</process>
</operator>
</process>0 -
should I insert an operator between the data set and the neural net algorithm? I am totally new to RapidMiner... this is my first time using it :-\0
-
yes you should
have you seend our additional ressources? http://docs.rapidminer.com/resources/ The book "Data Mining for the Masses" might be good for you.0