A program to recognize and reward our most engaged community members
<?xml version="1.0" encoding="UTF-8" standalone="no"?><process version="6.0.003"> <context> <input/> <output/> <macros/> </context> <operator activated="true" class="process" compatibility="6.0.002" expanded="true" name="Process"> <process expanded="true"> <operator activated="true" class="retrieve" compatibility="6.0.003" expanded="true" height="60" name="Sonar" width="90" x="112" y="120"> <parameter key="repository_entry" value="//Samples/data/Sonar"/> </operator> <operator activated="true" class="x_validation" compatibility="6.0.003" expanded="true" height="112" name="Validation" width="90" x="246" y="120"> <process expanded="true"> <operator activated="true" class="discretize_by_entropy" compatibility="6.0.003" expanded="true" height="94" name="Discretize" width="90" x="45" y="30"> <parameter key="attribute" value="Temperature"/> </operator> <operator activated="true" class="naive_bayes" compatibility="6.0.003" expanded="true" height="76" name="Naive Bayes" width="90" x="112" y="165"/> <operator activated="true" class="group_models" compatibility="6.0.003" expanded="true" height="94" name="Group Models" width="90" x="246" y="30"/> <connect from_port="training" to_op="Discretize" to_port="example set input"/> <connect from_op="Discretize" from_port="example set output" to_op="Naive Bayes" to_port="training set"/> <connect from_op="Discretize" from_port="preprocessing model" to_op="Group Models" to_port="models in 1"/> <connect from_op="Naive Bayes" from_port="model" to_op="Group Models" to_port="models in 2"/> <connect from_op="Group Models" from_port="model out" to_port="model"/> <portSpacing port="source_training" spacing="0"/> <portSpacing port="sink_model" spacing="0"/> <portSpacing port="sink_through 1" spacing="0"/> </process> <process expanded="true"> <operator activated="true" class="apply_model" compatibility="6.0.003" expanded="true" height="76" name="Apply Model" width="90" x="112" y="30"> <list key="application_parameters"/> </operator> <operator activated="true" class="performance_binominal_classification" compatibility="6.0.003" expanded="true" height="76" name="Performance" width="90" x="246" y="30"/> <connect from_port="model" to_op="Apply Model" to_port="model"/> <connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/> <connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/> <connect from_op="Performance" from_port="performance" to_port="averagable 1"/> <portSpacing port="source_model" spacing="0"/> <portSpacing port="source_test set" spacing="0"/> <portSpacing port="source_through 1" spacing="0"/> <portSpacing port="sink_averagable 1" spacing="0"/> <portSpacing port="sink_averagable 2" spacing="0"/> </process> </operator> <connect from_op="Sonar" from_port="output" to_op="Validation" to_port="training"/> <connect from_op="Validation" from_port="averagable 1" to_port="result 1"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="sink_result 1" spacing="90"/> <portSpacing port="sink_result 2" spacing="54"/> </process> </operator></process>
So it means the model or the bin created from the discretized process is applied to the new data right?Not applying a new "discretize by entropy" preprocessing to the new data, I'm sorry if this is confusing, I only want to make sure.Thank You
Hi,
yes. You should apply the preprocessing model to the new data set.
BR,
Martin