How to apply batch model to non batched data

hans94miguel
hans94miguel New Altair Community Member
edited November 2024 in Community Q&A
hi!
i have created a model using batched validation, is there a way to apply this model to non-batched data?

Here is the sample process I created

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<process version="7.0.001">
  <context>
    <input/>
    <output/>
    <macros/>
  </context>
  <operator activated="true" class="process" compatibility="7.0.001" expanded="true" name="Process">
    <parameter key="logverbosity" value="init"/>
    <parameter key="random_seed" value="2001"/>
    <parameter key="send_mail" value="never"/>
    <parameter key="notification_email" value=""/>
    <parameter key="process_duration_for_mail" value="30"/>
    <parameter key="encoding" value="SYSTEM"/>
    <process expanded="true">
      <operator activated="true" class="retrieve" compatibility="7.0.001" expanded="true" height="68" name="Retrieve distmodel3" width="90" x="45" y="136">
        <parameter key="repository_entry" value="../data/distmodel3"/>
      </operator>
      <operator activated="true" class="set_role" compatibility="7.0.001" expanded="true" height="82" name="Set Role" width="90" x="246" y="187">
        <parameter key="attribute_name" value="batchid"/>
        <parameter key="target_role" value="batch"/>
        <list key="set_additional_roles">
          <parameter key="Letter" value="label"/>
          <parameter key="Frame" value="batch"/>
          <parameter key="Feat1" value="regular"/>
          <parameter key="Feat2" value="regular"/>
          <parameter key="Feat3" value="regular"/>
          <parameter key="Feat4" value="regular"/>
          <parameter key="Feat5" value="regular"/>
          <parameter key="Feat6" value="regular"/>
          <parameter key="Feat7" value="regular"/>
          <parameter key="Feat8" value="regular"/>
          <parameter key="Gender" value="regular"/>
        </list>
      </operator>
      <operator activated="true" class="batch_x_validation" compatibility="7.0.001" expanded="true" height="124" name="Validation" width="90" x="380" y="85">
        <parameter key="create_complete_model" value="false"/>
        <parameter key="average_performances_only" value="true"/>
        <process expanded="true">
          <operator activated="false" class="weka:W-J48" compatibility="7.0.000" expanded="true" height="82" name="W-J48" width="90" x="112" y="34">
            <parameter key="U" value="true"/>
            <parameter key="C" value="0.25"/>
            <parameter key="M" value="2.0"/>
            <parameter key="R" value="false"/>
            <parameter key="B" value="true"/>
            <parameter key="S" value="false"/>
            <parameter key="L" value="false"/>
            <parameter key="A" value="false"/>
          </operator>
          <operator activated="true" class="k_nn" compatibility="7.0.001" expanded="true" height="82" name="k-NN" width="90" x="112" y="187">
            <parameter key="k" value="3"/>
            <parameter key="weighted_vote" value="false"/>
            <parameter key="measure_types" value="MixedMeasures"/>
            <parameter key="mixed_measure" value="MixedEuclideanDistance"/>
            <parameter key="nominal_measure" value="NominalDistance"/>
            <parameter key="numerical_measure" value="EuclideanDistance"/>
            <parameter key="divergence" value="GeneralizedIDivergence"/>
            <parameter key="kernel_type" value="radial"/>
            <parameter key="kernel_gamma" value="1.0"/>
            <parameter key="kernel_sigma1" value="1.0"/>
            <parameter key="kernel_sigma2" value="0.0"/>
            <parameter key="kernel_sigma3" value="2.0"/>
            <parameter key="kernel_degree" value="3.0"/>
            <parameter key="kernel_shift" value="1.0"/>
            <parameter key="kernel_a" value="1.0"/>
            <parameter key="kernel_b" value="0.0"/>
          </operator>
          <connect from_port="training" to_op="k-NN" to_port="training set"/>
          <connect from_op="k-NN" from_port="model" to_port="model"/>
          <portSpacing port="source_training" spacing="0"/>
          <portSpacing port="sink_model" spacing="0"/>
          <portSpacing port="sink_through 1" spacing="0"/>
        </process>
        <process expanded="true">
          <operator activated="true" class="apply_model" compatibility="7.0.001" expanded="true" height="82" name="Apply Model" width="90" x="45" y="34">
            <list key="application_parameters"/>
            <parameter key="create_view" value="false"/>
          </operator>
          <operator activated="true" class="performance_classification" compatibility="7.0.001" expanded="true" height="82" name="Performance" width="90" x="179" y="34">
            <parameter key="main_criterion" value="first"/>
            <parameter key="accuracy" value="true"/>
            <parameter key="classification_error" value="true"/>
            <parameter key="kappa" value="true"/>
            <parameter key="weighted_mean_recall" value="false"/>
            <parameter key="weighted_mean_precision" value="false"/>
            <parameter key="spearman_rho" value="false"/>
            <parameter key="kendall_tau" value="false"/>
            <parameter key="absolute_error" value="false"/>
            <parameter key="relative_error" value="false"/>
            <parameter key="relative_error_lenient" value="false"/>
            <parameter key="relative_error_strict" value="false"/>
            <parameter key="normalized_absolute_error" value="false"/>
            <parameter key="root_mean_squared_error" value="false"/>
            <parameter key="root_relative_squared_error" value="false"/>
            <parameter key="squared_error" value="false"/>
            <parameter key="correlation" value="false"/>
            <parameter key="squared_correlation" value="false"/>
            <parameter key="cross-entropy" value="false"/>
            <parameter key="margin" value="false"/>
            <parameter key="soft_margin_loss" value="false"/>
            <parameter key="logistic_loss" value="false"/>
            <parameter key="skip_undefined_labels" value="true"/>
            <parameter key="use_example_weights" value="true"/>
            <list key="class_weights"/>
          </operator>
          <connect from_port="model" to_op="Apply Model" to_port="model"/>
          <connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/>
          <connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/>
          <connect from_op="Performance" from_port="performance" to_port="averagable 1"/>
          <portSpacing port="source_model" spacing="0"/>
          <portSpacing port="source_test set" spacing="0"/>
          <portSpacing port="source_through 1" spacing="0"/>
          <portSpacing port="sink_averagable 1" spacing="0"/>
          <portSpacing port="sink_averagable 2" spacing="0"/>
        </process>
      </operator>
      <operator activated="true" class="legacy:write_model" compatibility="7.0.001" expanded="true" height="68" name="Write Model" width="90" x="514" y="187">
        <parameter key="model_file" value="C:\Users\Hans\Documents\ModelFile.mod"/>
        <parameter key="overwrite_existing_file" value="true"/>
        <parameter key="output_type" value="XML Zipped"/>
      </operator>
      <connect from_op="Retrieve distmodel3" from_port="output" to_op="Set Role" to_port="example set input"/>
      <connect from_op="Set Role" from_port="example set output" to_op="Validation" to_port="training"/>
      <connect from_op="Validation" from_port="model" to_op="Write Model" to_port="input"/>
      <connect from_op="Validation" from_port="training" to_port="result 1"/>
      <connect from_op="Validation" from_port="averagable 1" to_port="result 2"/>
      <portSpacing port="source_input 1" spacing="0"/>
      <portSpacing port="sink_result 1" spacing="0"/>
      <portSpacing port="sink_result 2" spacing="0"/>
      <portSpacing port="sink_result 3" spacing="0"/>
    </process>
  </operator>
</process>
Tagged:

Answers

  • earmijo
    earmijo New Altair Community Member
    The model that comes out of an operator of X-val uses the entire dataset. It's irrelevant if you used batch x-val or regular x-val. Store the model or write it to a file. Then you can apply it to a dataset with the same structure.

Welcome!

It looks like you're new here. Sign in or register to get started.

Welcome!

It looks like you're new here. Sign in or register to get started.