A program to recognize and reward our most engaged community members
<?xml version="1.0" encoding="UTF-8" standalone="no"?><process version="6.5.002"> <context> <input/> <output/> <macros/> </context> <operator activated="true" class="process" compatibility="6.5.002" expanded="true" name="Process"> <process expanded="true"> <operator activated="true" breakpoints="after" class="retrieve" compatibility="6.5.002" expanded="true" height="60" name="Read Warpbreaks" width="90" x="45" y="30"> <parameter key="repository_entry" value="//Clases/data/warpbreaks"/> <description align="center" color="blue" colored="true" width="126">Read Warpbreaks Dataset</description> </operator> <operator activated="true" class="split_data" compatibility="6.5.002" expanded="true" height="94" name="Split Data" width="90" x="246" y="30"> <enumeration key="partitions"> <parameter key="ratio" value="0.75"/> <parameter key="ratio" value="0.25"/> </enumeration> <description align="center" color="purple" colored="true" width="126">Split the data in a training and a test set</description> </operator> <operator activated="true" class="r_scripting:execute_r" compatibility="6.5.000" expanded="true" height="76" name="Learn Model" width="90" x="514" y="30"> <parameter key="script" value="# train a Poisson model on the training data and return the learned model rm_main = function(data) { 	PoissonModel <- lm(formula =breaks ~ . , data =data,family=poisson()) 	return(PoissonModel) } "/> <description align="center" color="red" colored="true" width="126">Train a Poisson model in R and return it as an R object</description> </operator> <operator activated="true" class="r_scripting:execute_r" compatibility="6.5.000" expanded="true" height="94" name="Apply R Model" width="90" x="648" y="210"> <parameter key="script" value="## load the trained model and apply it on the test data rm_main = function(model, data) { # apply the model and build a prediction result <-predict(model, data) # add the prediction to the example set data$prediction <- result # update the meta data metaData$data$prediction <<- list(type="real", role="prediction") return(data) } "/> <description align="center" color="red" colored="true" width="126">Apply the trained model on the test data</description> </operator> <connect from_op="Read Warpbreaks" from_port="output" to_op="Split Data" to_port="example set"/> <connect from_op="Split Data" from_port="partition 1" to_op="Learn Model" to_port="input 1"/> <connect from_op="Split Data" from_port="partition 2" to_op="Apply R Model" to_port="input 2"/> <connect from_op="Learn Model" from_port="output 1" to_op="Apply R Model" to_port="input 1"/> <connect from_op="Apply R Model" from_port="output 1" to_port="result 1"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="sink_result 1" spacing="0"/> <portSpacing port="sink_result 2" spacing="0"/> </process> </operator></process>