Support vector machine

User: "Pallab"
New Altair Community Member
Updated by Jocelyn
Hello all machine learning experts, I am naive in machine learning topics. My data have six features(6 regular attributes) and 2 labels(1 special attribute)(true and false)(hope I used right term). I want to combine those features which has to be trained by SVM. Data looks like that:-

ZDis       ZAnch     ZSurf     Zval     ZDom     ZEntropy  Top5
0.48659   -0.20412  1.19243   0.15374  0.59667   1.34151   False
-0.10067  4.89898   -0.73677  0.22506  0.59667   1.34151   True
2.24837   -0.20412  -2.02291  0.22455  0.59667   1.34151   False
0.48659   -0.20412  1.19243   -0.06352 0.59667   1.34151   False
-0.68793  -0.20412  1.19243   0.12405  0.59667   1.34151   False
-2.02698  -0.40825  1.86371   0.07348  1.3272    -0.1242   False
-0.1807   2.44949   0.17865   0.07345  0.9401    0.1505    False
1.66557   2.44949   -1.50641  0.07381  0.9401    1.30135   False
1.11169   -0.40825  0.34716   0.07381  0.9401    -0.20225  True
1.5337    -0.40825  -0.01393  0.07381  -0.9954   0.53144   False
-0.01945  -0.48348  -1.16128  0.11035  2.02339   0.90237   False
-1.52944   3.23556  0.23428   0.11093  1.22613   -0.12973  False
0.43354   -0.48348  -2.20795  0.11093  1.22613   2.25734   False
2.84953   -0.48348  -2.20795  0.11093  1.49189   3.07609   True
So I want to do here total = X1*ZDis+X2*ZAnch+X3*ZSurf+X4*Zval+X5*ZDom+X6*ZEntropy where X1..X6 are weighted value which should come from SVM. I used rapidminner to to get this weight value for my 40 examples of training set and result is below:-

Total number of Support Vectors: 40
Bias (offset): -1.055
w[ZDis] = 0.076
w[ZAnch] = -0.058
w[ZSurf] = 0.057
w[Zval] = 0.010
w[ZDom] = 0.073
w[ZEntropy] = 0.077
I am not sure I did the correct approach or not so I need your kind help. Thanks in advance.

Find more posts tagged with