Support vector machine
Hello all machine learning experts, I am naive in machine learning topics. My data have six features(6 regular attributes) and 2 labels(1 special attribute)(true and false)(hope I used right term). I want to combine those features which has to be trained by SVM. Data looks like that:-
ZDis ZAnch ZSurf Zval ZDom ZEntropy Top5
0.48659 -0.20412 1.19243 0.15374 0.59667 1.34151 False
-0.10067 4.89898 -0.73677 0.22506 0.59667 1.34151 True
2.24837 -0.20412 -2.02291 0.22455 0.59667 1.34151 False
0.48659 -0.20412 1.19243 -0.06352 0.59667 1.34151 False
-0.68793 -0.20412 1.19243 0.12405 0.59667 1.34151 False
-2.02698 -0.40825 1.86371 0.07348 1.3272 -0.1242 False
-0.1807 2.44949 0.17865 0.07345 0.9401 0.1505 False
1.66557 2.44949 -1.50641 0.07381 0.9401 1.30135 False
1.11169 -0.40825 0.34716 0.07381 0.9401 -0.20225 True
1.5337 -0.40825 -0.01393 0.07381 -0.9954 0.53144 False
-0.01945 -0.48348 -1.16128 0.11035 2.02339 0.90237 False
-1.52944 3.23556 0.23428 0.11093 1.22613 -0.12973 False
0.43354 -0.48348 -2.20795 0.11093 1.22613 2.25734 False
2.84953 -0.48348 -2.20795 0.11093 1.49189 3.07609 True
So I want to do here total = X1*ZDis+X2*ZAnch+X3*ZSurf+X4*Zval+X5*ZDom+X6*ZEntropy where X1..X6 are weighted value which should come from SVM. I used rapidminner to to get this weight value for my 40 examples of training set and result is below:-
Total number of Support Vectors: 40
Bias (offset): -1.055
w[ZDis] = 0.076
w[ZAnch] = -0.058
w[ZSurf] = 0.057
w[Zval] = 0.010
w[ZDom] = 0.073
w[ZEntropy] = 0.077
I am not sure I did the correct approach or not so I need your kind help. Thanks in advance.
ZDis ZAnch ZSurf Zval ZDom ZEntropy Top5
0.48659 -0.20412 1.19243 0.15374 0.59667 1.34151 False
-0.10067 4.89898 -0.73677 0.22506 0.59667 1.34151 True
2.24837 -0.20412 -2.02291 0.22455 0.59667 1.34151 False
0.48659 -0.20412 1.19243 -0.06352 0.59667 1.34151 False
-0.68793 -0.20412 1.19243 0.12405 0.59667 1.34151 False
-2.02698 -0.40825 1.86371 0.07348 1.3272 -0.1242 False
-0.1807 2.44949 0.17865 0.07345 0.9401 0.1505 False
1.66557 2.44949 -1.50641 0.07381 0.9401 1.30135 False
1.11169 -0.40825 0.34716 0.07381 0.9401 -0.20225 True
1.5337 -0.40825 -0.01393 0.07381 -0.9954 0.53144 False
-0.01945 -0.48348 -1.16128 0.11035 2.02339 0.90237 False
-1.52944 3.23556 0.23428 0.11093 1.22613 -0.12973 False
0.43354 -0.48348 -2.20795 0.11093 1.22613 2.25734 False
2.84953 -0.48348 -2.20795 0.11093 1.49189 3.07609 True
So I want to do here total = X1*ZDis+X2*ZAnch+X3*ZSurf+X4*Zval+X5*ZDom+X6*ZEntropy where X1..X6 are weighted value which should come from SVM. I used rapidminner to to get this weight value for my 40 examples of training set and result is below:-
Total number of Support Vectors: 40
Bias (offset): -1.055
w[ZDis] = 0.076
w[ZAnch] = -0.058
w[ZSurf] = 0.057
w[Zval] = 0.010
w[ZDom] = 0.073
w[ZEntropy] = 0.077
I am not sure I did the correct approach or not so I need your kind help. Thanks in advance.