<?xml version="1.0" encoding="UTF-8" standalone="no"?><process version="5.3.008"> <context> <input/> <output/> <macros/> </context> <operator activated="true" class="process" compatibility="5.3.008" expanded="true" name="Process"> <process expanded="true"> <operator activated="true" class="generate_churn_data" compatibility="5.3.008" expanded="true" height="60" name="Generate Churn Data" width="90" x="45" y="75"> <parameter key="number_examples" value="1000"/> <parameter key="use_local_random_seed" value="true"/> </operator> <operator activated="true" class="nominal_to_binominal" compatibility="5.3.008" expanded="true" height="94" name="Nominal to Binominal" width="90" x="179" y="75"/> <operator activated="true" class="split_validation" compatibility="5.3.008" expanded="true" height="112" name="Validation" width="90" x="313" y="75"> <parameter key="sampling_type" value="stratified sampling"/> <parameter key="use_local_random_seed" value="true"/> <process expanded="true"> <operator activated="true" class="decision_tree" compatibility="5.3.008" expanded="true" height="76" name="Decision Tree" width="90" x="45" y="30"> <parameter key="minimal_gain" value="0.04"/> </operator> <connect from_port="training" to_op="Decision Tree" to_port="training set"/> <connect from_op="Decision Tree" from_port="model" to_port="model"/> <portSpacing port="source_training" spacing="0"/> <portSpacing port="sink_model" spacing="0"/> <portSpacing port="sink_through 1" spacing="0"/> </process> <process expanded="true"> <operator activated="true" class="apply_model" compatibility="5.3.008" expanded="true" height="76" name="Apply Model" width="90" x="45" y="30"> <list key="application_parameters"/> </operator> <operator activated="true" class="performance" compatibility="5.3.008" expanded="true" height="76" name="Performance" width="90" x="155" y="30"/> <connect from_port="model" to_op="Apply Model" to_port="model"/> <connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/> <connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/> <connect from_op="Performance" from_port="performance" to_port="averagable 1"/> <portSpacing port="source_model" spacing="0"/> <portSpacing port="source_test set" spacing="0"/> <portSpacing port="source_through 1" spacing="0"/> <portSpacing port="sink_averagable 1" spacing="0"/> <portSpacing port="sink_averagable 2" spacing="0"/> </process> </operator> <connect from_op="Generate Churn Data" from_port="output" to_op="Nominal to Binominal" to_port="example set input"/> <connect from_op="Nominal to Binominal" from_port="example set output" to_op="Validation" to_port="training"/> <connect from_op="Validation" from_port="model" to_port="result 1"/> <connect from_op="Validation" from_port="averagable 1" to_port="result 2"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="sink_result 1" spacing="36"/> <portSpacing port="sink_result 2" spacing="0"/> <portSpacing port="sink_result 3" spacing="162"/> </process> </operator></process>
the calculation of the AUC is not wrong. In the standard implementation (neither optimistic nor pessimistic), we smooth the line by interpolating between the steps of the function