[SOLVED] Unable to get X-validation working. Average port constantly gives error

invictus_champ
invictus_champ New Altair Community Member
edited November 2024 in Community Q&A
Hi All,

I am having an issue with the crossvalidation. I have a labeled (binomial) data set; which transformed and fed to X-validation. Before trying x-validation, I managed to get a SVM model with the same data.

When I remove SVM, then insert x-validation, and in sub-process, I include SVM and Apply Model. On the testing RHS, therthere is Validation.averagable 1 (averagable 1) port, which is constantly red the moment I load xvalidation. When I try running I got the error;

"wrong data of type 'data table' was delivered at port 'averagable 1' expected data of type 'average vector'

How can I get this x-validation work??
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<process version="5.3.000">
 <context>
   <input/>
   <output/>
   <macros/>
 </context>
 <operator activated="true" class="process" compatibility="5.3.000" expanded="true" name="Root">
   <description>For many learning tasks, Support Vector Machines are among the best suited learning schemes.They adapt the idea of structural risk minimization and allows for non-linear generalizations with help of kernel functions.</description>
   <process expanded="true" height="584" width="962">
     <operator activated="true" class="retrieve" compatibility="5.3.000" expanded="true" height="60" name="Retrieve Fraud-All-Labeled" width="90" x="45" y="165">
       <parameter key="repository_entry" value="//RapidLocalRepository/Fraud/NewTests/Fraud-All-Labeled"/>
     </operator>
     <operator activated="true" class="nominal_to_numerical" compatibility="5.3.000" expanded="true" height="94" name="Nominal to Numerical" width="90" x="179" y="30">
       <list key="comparison_groups"/>
     </operator>
     <operator activated="true" class="x_validation" compatibility="5.3.000" expanded="true" height="130" name="Validation" width="90" x="313" y="30">
       <process expanded="true" height="434" width="351">
         <operator activated="true" class="support_vector_machine" compatibility="5.3.000" expanded="true" height="112" name="SVM" width="90" x="112" y="75"/>
         <connect from_port="training" to_op="SVM" to_port="training set"/>
         <connect from_op="SVM" from_port="model" to_port="model"/>
         <connect from_op="SVM" from_port="weights" to_port="through 1"/>
         <portSpacing port="source_training" spacing="0"/>
         <portSpacing port="sink_model" spacing="0"/>
         <portSpacing port="sink_through 1" spacing="0"/>
         <portSpacing port="sink_through 2" spacing="0"/>
       </process>
       <process expanded="true" height="434" width="351">
         <operator activated="true" class="apply_model" compatibility="5.3.000" expanded="true" height="76" name="Apply Model" width="90" x="45" y="75">
           <list key="application_parameters"/>
         </operator>
         <connect from_port="model" to_op="Apply Model" to_port="model"/>
         <connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/>
         <connect from_op="Apply Model" from_port="labelled data" to_port="averagable 1"/>
         <portSpacing port="source_model" spacing="0"/>
         <portSpacing port="source_test set" spacing="0"/>
         <portSpacing port="source_through 1" spacing="0"/>
         <portSpacing port="source_through 2" spacing="0"/>
         <portSpacing port="sink_averagable 1" spacing="0"/>
         <portSpacing port="sink_averagable 2" spacing="0"/>
         <portSpacing port="sink_averagable 3" spacing="0"/>
       </process>
     </operator>
     <connect from_op="Retrieve Fraud-All-Labeled" from_port="output" to_op="Nominal to Numerical" to_port="example set input"/>
     <connect from_op="Nominal to Numerical" from_port="example set output" to_op="Validation" to_port="training"/>
     <connect from_op="Validation" from_port="averagable 1" to_port="result 1"/>
     <portSpacing port="source_input 1" spacing="0"/>
     <portSpacing port="sink_result 1" spacing="0"/>
     <portSpacing port="sink_result 2" spacing="0"/>
   </process>
 </operator>
</process>
Tagged:

Answers

  • earmijo
    earmijo New Altair Community Member
    Try this:
    <?xml version="1.0" encoding="UTF-8" standalone="no"?>
    <process version="5.2.008">
      <context>
        <input/>
        <output/>
        <macros/>
      </context>
      <operator activated="true" class="process" compatibility="5.2.008" expanded="true" name="Root">
        <description>For many learning tasks, Support Vector Machines are among the best suited learning schemes.They adapt the idea of structural risk minimization and allows for non-linear generalizations with help of kernel functions.</description>
        <process expanded="true" height="467" width="567">
          <operator activated="true" class="retrieve" compatibility="5.2.008" expanded="true" height="60" name="Retrieve Fraud-All-Labeled" width="90" x="45" y="165">
            <parameter key="repository_entry" value="//RapidLocalRepository/Fraud/NewTests/Fraud-All-Labeled"/>
          </operator>
          <operator activated="true" class="nominal_to_numerical" compatibility="5.2.008" expanded="true" height="94" name="Nominal to Numerical" width="90" x="179" y="30">
            <list key="comparison_groups"/>
          </operator>
          <operator activated="true" class="x_validation" compatibility="5.0.000" expanded="true" height="112" name="Validation" width="90" x="447" y="30">
            <description>A cross-validation evaluating a decision tree model.</description>
            <process expanded="true" height="654" width="466">
              <operator activated="true" class="support_vector_machine" compatibility="5.2.008" expanded="true" height="112" name="SVM" width="90" x="188" y="30"/>
              <connect from_port="training" to_op="SVM" to_port="training set"/>
              <connect from_op="SVM" from_port="model" to_port="model"/>
              <portSpacing port="source_training" spacing="0"/>
              <portSpacing port="sink_model" spacing="0"/>
              <portSpacing port="sink_through 1" spacing="0"/>
            </process>
            <process expanded="true" height="654" width="466">
              <operator activated="true" class="apply_model" compatibility="5.0.000" expanded="true" height="76" name="Apply Model" width="90" x="45" y="30">
                <list key="application_parameters"/>
              </operator>
              <operator activated="true" class="performance" compatibility="5.0.000" expanded="true" height="76" name="Performance" width="90" x="179" y="30"/>
              <connect from_port="model" to_op="Apply Model" to_port="model"/>
              <connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/>
              <connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/>
              <connect from_op="Performance" from_port="performance" to_port="averagable 1"/>
              <portSpacing port="source_model" spacing="0"/>
              <portSpacing port="source_test set" spacing="0"/>
              <portSpacing port="source_through 1" spacing="0"/>
              <portSpacing port="sink_averagable 1" spacing="0"/>
              <portSpacing port="sink_averagable 2" spacing="0"/>
            </process>
          </operator>
          <connect from_op="Retrieve Fraud-All-Labeled" from_port="output" to_op="Nominal to Numerical" to_port="example set input"/>
          <connect from_op="Nominal to Numerical" from_port="example set output" to_op="Validation" to_port="training"/>
          <connect from_op="Validation" from_port="model" to_port="result 1"/>
          <connect from_op="Validation" from_port="averagable 1" to_port="result 2"/>
          <portSpacing port="source_input 1" spacing="0"/>
          <portSpacing port="sink_result 1" spacing="0"/>
          <portSpacing port="sink_result 2" spacing="0"/>
          <portSpacing port="sink_result 3" spacing="0"/>
        </process>
      </operator>
    </process>
  • invictus_champ
    invictus_champ New Altair Community Member
    Thank you very much!

Welcome!

It looks like you're new here. Sign in or register to get started.

Welcome!

It looks like you're new here. Sign in or register to get started.