🎉Community Raffle - Win $25

An exclusive raffle opportunity for active members like you! Complete your profile, answer questions and get your first accepted badge to enter the raffle.
Join and Win

Generalized Linear Model (GLM)

User: "bkruger"
New Altair Community Member
Updated by Jocelyn
Hi,

Is there a standard process for doing GLM's in RapidMiner, or can someone please point me to a process example?

Regards
BK

Find more posts tagged with

Sort by:
1 - 4 of 41
    User: "am_das"
    New Altair Community Member

    Hi,

    Did you finally receive any content or example of GLM functionality in Rapidminer?

    I am looking for the same.

     

    Thanks

    A

    it's in for quite a while now. just search for glm in the operators.

     

    Best,

    Martin

    User: "am_das"
    New Altair Community Member

    Yes, I read through the operators documentations. I would like more info on how to specify beta constraints.

    My model has around 30 input variables and I want to constrain the coefficients of few variables as positive (because I know that the relationship is +ve) by specifying a lower bound as 0 and upper bound as +infinity. I am struggling to implement it in the paramters window (screenshots):

    - What is the 'category' input right next to attribute name?

    - How to input +infinity as upper bound?

     

    Thanks

    A

    Capture_beta_constraint.JPGCapture-documentation.JPGscreenshot of the documentation

    User: "YYH"
    Altair Employee

    Hi @am_das,

     

    That is a good question. The beta constraint parameter can be setup in your GLM.

     

    Screen Shot 2018-03-28 at 11.43.27 AM.png

     

    In my attached process, I used deals data with customer profile. Input data has a categorical variable "payement method" and suppose I know the coefficients (beta) for that "credit card" category need to be positve, then I set up the constraints for the coefficients of that category. 

    upper_bounds is (optional): The upper bounds of the beta. Must be greater than or equal to lower_bounds. You need to have real value there.

    Hope this helps.

     

    <?xml version="1.0" encoding="UTF-8"?><process version="8.1.001">
    <context>
    <input/>
    <output/>
    <macros/>
    </context>
    <operator activated="true" class="process" compatibility="8.1.001" expanded="true" name="Process">
    <process expanded="true">
    <operator activated="true" class="retrieve" compatibility="8.1.001" expanded="true" height="68" name="Retrieve Deals" width="90" x="45" y="34">
    <parameter key="repository_entry" value="//Samples/data/Deals"/>
    </operator>
    <operator activated="true" class="h2o:generalized_linear_model" compatibility="7.2.000" expanded="true" height="124" name="Generalized Linear Model" width="90" x="179" y="34">
    <parameter key="specify_beta_constraints" value="true"/>
    <list key="beta_constraints">
    <parameter key="Payment Method.credit card" value="0\.01.5\.0.0\.0.0\.0"/>
    </list>
    <list key="expert_parameters"/>
    </operator>
    <operator activated="true" class="retrieve" compatibility="8.1.001" expanded="true" height="68" name="Retrieve Deals-Testset" width="90" x="179" y="238">
    <parameter key="repository_entry" value="//Samples/data/Deals-Testset"/>
    </operator>
    <operator activated="true" class="apply_model" compatibility="7.1.001" expanded="true" height="82" name="Apply Model" width="90" x="380" y="34">
    <list key="application_parameters"/>
    </operator>
    <operator activated="true" class="performance_classification" compatibility="8.1.001" expanded="true" height="82" name="Performance" width="90" x="514" y="85">
    <list key="class_weights"/>
    </operator>
    <connect from_op="Retrieve Deals" from_port="output" to_op="Generalized Linear Model" to_port="training set"/>
    <connect from_op="Generalized Linear Model" from_port="model" to_op="Apply Model" to_port="model"/>
    <connect from_op="Retrieve Deals-Testset" from_port="output" to_op="Apply Model" to_port="unlabelled data"/>
    <connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/>
    <connect from_op="Apply Model" from_port="model" to_port="result 2"/>
    <connect from_op="Performance" from_port="performance" to_port="result 1"/>
    <connect from_op="Performance" from_port="example set" to_port="result 3"/>
    <portSpacing port="source_input 1" spacing="0"/>
    <portSpacing port="sink_result 1" spacing="0"/>
    <portSpacing port="sink_result 2" spacing="0"/>
    <portSpacing port="sink_result 3" spacing="0"/>
    <portSpacing port="sink_result 4" spacing="0"/>
    </process>
    </operator>
    </process>

    YY