[SOLVED] Error:Deviaion of performance was NAN
Hi
I used evolutionary optimization operator to optimize select by weights operator and nu-SVR at the same time. but in the log wiev, i encountered the error "PM WARNING: SimpleCriterion: Deviation of Performance was NaN!". How can i fix the problem? Please i am waiting for your help
My model xml are:
I used evolutionary optimization operator to optimize select by weights operator and nu-SVR at the same time. but in the log wiev, i encountered the error "PM WARNING: SimpleCriterion: Deviation of Performance was NaN!". How can i fix the problem? Please i am waiting for your help
My model xml are:
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<process version="5.2.008">
<context>
<input/>
<output/>
<macros/>
</context>
<operator activated="true" class="process" compatibility="5.2.008" expanded="true" name="Process">
<parameter key="parallelize_main_process" value="true"/>
<process expanded="true" height="400" width="480">
<operator activated="true" class="retrieve" compatibility="5.2.008" expanded="true" height="60" name="Retrieve" width="90" x="45" y="30">
<parameter key="repository_entry" value="//kenan/Tarih/20.11.2012/Clus3/ClusByKMeans(Fast)Euclidian"/>
</operator>
<operator activated="true" class="weight_by_relief" compatibility="5.2.008" expanded="true" height="76" name="Weight by Relief" width="90" x="180" y="30"/>
<operator activated="true" class="parallel:optimize_parameters_evolutionary_parallel" compatibility="5.1.000" expanded="true" height="148" name="Optimize Parameters (Evolutionary)" width="90" x="313" y="210">
<list key="parameters">
<parameter key="Select by Weights (2).k" value="[15;35]"/>
<parameter key="SVM (2).gamma" value="[0.0;0.01]"/>
<parameter key="SVM (2).nu" value="[0.0;0.5]"/>
<parameter key="SVM (2).C" value="[0.0;0.01]"/>
<parameter key="SVM (2).epsilon" value="[0.0;0.01]"/>
</list>
<parameter key="max_generations" value="90"/>
<parameter key="population_size" value="6"/>
<parameter key="crossover_prob" value="0.8"/>
<parameter key="number_of_threads" value="8"/>
<parameter key="parallelize_optimization_process" value="true"/>
<process expanded="true" height="400" width="632">
<operator activated="true" class="select_by_weights" compatibility="5.2.008" expanded="true" height="94" name="Select by Weights (2)" width="90" x="45" y="30">
<parameter key="weight_relation" value="top k"/>
<parameter key="k" value="16"/>
</operator>
<operator activated="true" class="split_validation" compatibility="5.1.002" expanded="true" height="112" name="Validation (2)" width="90" x="380" y="30">
<parameter key="split_ratio" value="0.9"/>
<parameter key="sampling_type" value="linear sampling"/>
<parameter key="parallelize_training" value="true"/>
<parameter key="parallelize_testing" value="true"/>
<process expanded="true" height="400" width="165">
<operator activated="true" class="support_vector_machine_libsvm" compatibility="5.2.008" expanded="true" height="76" name="SVM (2)" width="90" x="45" y="30">
<parameter key="svm_type" value="nu-SVR"/>
<parameter key="gamma" value="0.0018245416895055634"/>
<parameter key="C" value="0.00562070136566738"/>
<parameter key="nu" value="0.48424641085734477"/>
<parameter key="epsilon" value="0.009366372796859642"/>
<list key="class_weights"/>
</operator>
<connect from_port="training" to_op="SVM (2)" to_port="training set"/>
<connect from_op="SVM (2)" from_port="model" to_port="model"/>
<portSpacing port="source_training" spacing="0"/>
<portSpacing port="sink_model" spacing="0"/>
<portSpacing port="sink_through 1" spacing="0"/>
</process>
<process expanded="true" height="400" width="300">
<operator activated="true" class="apply_model" compatibility="5.2.008" expanded="true" height="76" name="Apply Model (2)" width="90" x="45" y="30">
<list key="application_parameters"/>
</operator>
<operator activated="true" class="performance_regression" compatibility="5.2.008" expanded="true" height="76" name="Performance (2)" width="90" x="180" y="30">
<parameter key="main_criterion" value="root_mean_squared_error"/>
<parameter key="absolute_error" value="true"/>
<parameter key="relative_error" value="true"/>
<parameter key="root_relative_squared_error" value="true"/>
<parameter key="squared_error" value="true"/>
<parameter key="squared_correlation" value="true"/>
<parameter key="spearman_rho" value="true"/>
<parameter key="kendall_tau" value="true"/>
</operator>
<connect from_port="model" to_op="Apply Model (2)" to_port="model"/>
<connect from_port="test set" to_op="Apply Model (2)" to_port="unlabelled data"/>
<connect from_op="Apply Model (2)" from_port="labelled data" to_op="Performance (2)" to_port="labelled data"/>
<connect from_op="Performance (2)" from_port="performance" to_port="averagable 1"/>
<portSpacing port="source_model" spacing="0"/>
<portSpacing port="source_test set" spacing="0"/>
<portSpacing port="source_through 1" spacing="0"/>
<portSpacing port="sink_averagable 1" spacing="0"/>
<portSpacing port="sink_averagable 2" spacing="0"/>
</process>
</operator>
<connect from_port="input 1" to_op="Select by Weights (2)" to_port="weights"/>
<connect from_port="input 2" to_op="Select by Weights (2)" to_port="example set input"/>
<connect from_op="Select by Weights (2)" from_port="example set output" to_op="Validation (2)" to_port="training"/>
<connect from_op="Select by Weights (2)" from_port="weights" to_port="result 3"/>
<connect from_op="Validation (2)" from_port="model" to_port="result 1"/>
<connect from_op="Validation (2)" from_port="training" to_port="result 2"/>
<connect from_op="Validation (2)" from_port="averagable 1" to_port="performance"/>
<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="source_input 2" spacing="0"/>
<portSpacing port="source_input 3" spacing="0"/>
<portSpacing port="sink_performance" spacing="0"/>
<portSpacing port="sink_result 1" spacing="0"/>
<portSpacing port="sink_result 2" spacing="0"/>
<portSpacing port="sink_result 3" spacing="0"/>
<portSpacing port="sink_result 4" spacing="0"/>
</process>
</operator>
<operator activated="true" class="log" compatibility="5.2.008" expanded="true" height="76" name="Log" width="90" x="380" y="30">
<parameter key="filename" value="C:\Users\KenanB\Desktop\RapidminerLog\ParameterLog.txt"/>
<list key="log">
<parameter key="ApplyCount" value="operator.Optimize Parameters (Evolutionary).value.applycount"/>
<parameter key="RMSE" value="operator.Performance (2).value.root_mean_squared_error"/>
<parameter key="K" value="operator.Select by Weights (2).parameter.k"/>
<parameter key="C" value="operator.SVM (2).parameter.C"/>
<parameter key="NU" value="operator.SVM (2).parameter.nu"/>
<parameter key="Gamma" value="operator.SVM (2).parameter.gamma"/>
<parameter key="Epsilon" value="operator.SVM (2).parameter.epsilon"/>
</list>
</operator>
<connect from_op="Retrieve" from_port="output" to_op="Weight by Relief" to_port="example set"/>
<connect from_op="Weight by Relief" from_port="weights" to_op="Optimize Parameters (Evolutionary)" to_port="input 1"/>
<connect from_op="Weight by Relief" from_port="example set" to_op="Optimize Parameters (Evolutionary)" to_port="input 2"/>
<connect from_op="Optimize Parameters (Evolutionary)" from_port="performance" to_port="result 2"/>
<connect from_op="Optimize Parameters (Evolutionary)" from_port="parameter" to_op="Log" to_port="through 1"/>
<connect from_op="Optimize Parameters (Evolutionary)" from_port="result 1" to_port="result 3"/>
<connect from_op="Optimize Parameters (Evolutionary)" from_port="result 2" to_port="result 4"/>
<connect from_op="Log" from_port="through 1" to_port="result 1"/>
<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="sink_result 1" spacing="0"/>
<portSpacing port="sink_result 2" spacing="0"/>
<portSpacing port="sink_result 3" spacing="0"/>
<portSpacing port="sink_result 4" spacing="0"/>
<portSpacing port="sink_result 5" spacing="0"/>
</process>
</operator>
</process>