A program to recognize and reward our most engaged community members
<?xml version="1.0" encoding="UTF-8" standalone="no"?><process version="5.2.008"> <context> <input/> <output/> <macros/> </context> <operator activated="true" class="process" compatibility="5.2.008" expanded="true" name="Process"> <process expanded="true" height="450" width="882"> <operator activated="true" class="retrieve" compatibility="5.2.008" expanded="true" height="60" name="Retrieve" width="90" x="112" y="120"> <parameter key="repository_entry" value="descritized_GI_FROM_MI50"/> </operator> <operator activated="true" class="sample_stratified" compatibility="5.2.008" expanded="true" height="76" name="Sample (2)" width="90" x="246" y="120"> <parameter key="sample" value="relative"/> </operator> <operator activated="true" class="discretize_by_bins" compatibility="5.2.008" expanded="true" height="94" name="Discretize" width="90" x="380" y="120"> <parameter key="number_of_bins" value="5"/> <parameter key="range_name_type" value="short"/> </operator> <operator activated="true" class="x_validation" compatibility="5.2.008" expanded="true" height="112" name="Validation (2)" width="90" x="514" y="120"> <parameter key="parallelize_training" value="true"/> <parameter key="parallelize_testing" value="true"/> <process expanded="true" height="682" width="502"> <operator activated="true" class="bagging" compatibility="5.2.008" expanded="true" height="76" name="Bagging" width="90" x="179" y="30"> <parameter key="sample_ratio" value="0.4"/> <parameter key="iterations" value="40"/> <parameter key="parallelize_learning_process" value="true"/> <process expanded="true" height="682" width="1055"> <operator activated="true" class="multiply" compatibility="5.2.008" expanded="true" height="94" name="Multiply (2)" width="90" x="45" y="30"/> <operator activated="true" class="filter_examples" compatibility="5.2.008" expanded="true" height="76" name="Filter Examples (4)" width="90" x="313" y="30"> <parameter key="condition_class" value="attribute_value_filter"/> <parameter key="parameter_string" value="event=f"/> </operator> <operator activated="true" class="sample_stratified" compatibility="5.2.008" expanded="true" height="76" name="Sample (Stratified)" width="90" x="447" y="30"> <parameter key="sample" value="relative"/> <parameter key="sample_ratio" value="0.8"/> </operator> <operator activated="true" class="filter_examples" compatibility="5.2.008" expanded="true" height="76" name="Filter Examples (3)" width="90" x="313" y="255"> <parameter key="condition_class" value="attribute_value_filter"/> <parameter key="parameter_string" value="event=t"/> </operator> <operator activated="true" class="union" compatibility="5.2.008" expanded="true" height="76" name="Union" width="90" x="648" y="210"/> <operator activated="true" class="decision_tree" compatibility="5.2.008" expanded="true" height="76" name="Decision Tree" width="90" x="782" y="210"> <parameter key="criterion" value="gini_index"/> <parameter key="minimal_size_for_split" value="160"/> <parameter key="minimal_leaf_size" value="80"/> <parameter key="minimal_gain" value="0.01"/> <parameter key="maximal_depth" value="10"/> <parameter key="confidence" value="0.1"/> <parameter key="number_of_prepruning_alternatives" value="10"/> <parameter key="no_pre_pruning" value="true"/> </operator> <operator activated="false" class="naive_bayes" compatibility="5.2.008" expanded="true" height="76" name="Naive Bayes" width="90" x="782" y="30"/> <connect from_port="training set" to_op="Multiply (2)" to_port="input"/> <connect from_op="Multiply (2)" from_port="output 1" to_op="Filter Examples (4)" to_port="example set input"/> <connect from_op="Multiply (2)" from_port="output 2" to_op="Filter Examples (3)" to_port="example set input"/> <connect from_op="Filter Examples (4)" from_port="example set output" to_op="Sample (Stratified)" to_port="example set input"/> <connect from_op="Sample (Stratified)" from_port="example set output" to_op="Union" to_port="example set 1"/> <connect from_op="Filter Examples (3)" from_port="example set output" to_op="Union" to_port="example set 2"/> <connect from_op="Union" from_port="union" to_op="Decision Tree" to_port="training set"/> <connect from_op="Decision Tree" from_port="model" to_port="model"/> <portSpacing port="source_training set" spacing="0"/> <portSpacing port="sink_model" spacing="0"/> </process> </operator> <connect from_port="training" to_op="Bagging" to_port="training set"/> <connect from_op="Bagging" from_port="model" to_port="model"/> <portSpacing port="source_training" spacing="0"/> <portSpacing port="sink_model" spacing="0"/> <portSpacing port="sink_through 1" spacing="0"/> </process> <process expanded="true" height="682" width="502"> <operator activated="true" class="apply_model" compatibility="5.2.008" expanded="true" height="76" name="Apply Model (2)" width="90" x="112" y="30"> <list key="application_parameters"/> </operator> <operator activated="true" class="performance_binominal_classification" compatibility="5.2.008" expanded="true" height="76" name="Performance (2)" width="90" x="313" y="30"> <parameter key="main_criterion" value="AUC"/> <parameter key="accuracy" value="false"/> <parameter key="AUC" value="true"/> </operator> <connect from_port="model" to_op="Apply Model (2)" to_port="model"/> <connect from_port="test set" to_op="Apply Model (2)" to_port="unlabelled data"/> <connect from_op="Apply Model (2)" from_port="labelled data" to_op="Performance (2)" to_port="labelled data"/> <connect from_op="Performance (2)" from_port="performance" to_port="averagable 1"/> <portSpacing port="source_model" spacing="0"/> <portSpacing port="source_test set" spacing="0"/> <portSpacing port="source_through 1" spacing="0"/> <portSpacing port="sink_averagable 1" spacing="0"/> <portSpacing port="sink_averagable 2" spacing="0"/> </process> </operator> <connect from_op="Retrieve" from_port="output" to_op="Sample (2)" to_port="example set input"/> <connect from_op="Sample (2)" from_port="example set output" to_op="Discretize" to_port="example set input"/> <connect from_op="Discretize" from_port="example set output" to_op="Validation (2)" to_port="training"/> <connect from_op="Validation (2)" from_port="averagable 1" to_port="result 1"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="sink_result 1" spacing="0"/> <portSpacing port="sink_result 2" spacing="0"/> </process> </operator></process>
aryan.hosseinzadeh wrote:So you mean that in other algorithms (Naive bayes , SVM , etc.) the confidence is varying to draw the ROC ?