Hi,you can use Loop Attributes for this task. Just leave the role of all attributes at "regular" before passing the data into the loop. Then you can do something like the process below. You surely want to modify the sample process such that you log the performance or something inside the loop.Best, Marius[code<?xml version="1.0" encoding="UTF-8" standalone="no"?><process version="5.2.008"> <context> <input/> <output/> <macros/> </context> <operator activated="true" class="process" compatibility="5.2.008" expanded="true" name="Process"> <process expanded="true" height="190" width="547"> <operator activated="true" class="generate_data" compatibility="5.2.008" expanded="true" height="60" name="Generate Data" width="90" x="45" y="30"/> <operator activated="true" class="loop_attributes" compatibility="5.2.008" expanded="true" height="60" name="Loop Attributes" width="90" x="179" y="30"> <process expanded="true" height="511" width="598"> <operator activated="true" class="set_role" compatibility="5.2.008" expanded="true" height="76" name="Set Role" width="90" x="45" y="30"> <parameter key="name" value="%{loop_attribute}"/> <parameter key="target_role" value="label"/> <list key="set_additional_roles"/> </operator> <operator activated="true" class="support_vector_machine" compatibility="5.2.008" expanded="true" height="112" name="SVM" width="90" x="179" y="30"/> <operator activated="true" class="set_role" compatibility="5.2.008" expanded="true" height="76" name="Set Role (2)" width="90" x="313" y="30"> <parameter key="name" value="%{loop_attribute}"/> <list key="set_additional_roles"/> </operator> <connect from_port="example set" to_op="Set Role" to_port="example set input"/> <connect from_op="Set Role" from_port="example set output" to_op="SVM" to_port="training set"/> <connect from_op="SVM" from_port="exampleSet" to_op="Set Role (2)" to_port="example set input"/> <connect from_op="Set Role (2)" from_port="example set output" to_port="example set"/> <portSpacing port="source_example set" spacing="0"/> <portSpacing port="sink_example set" spacing="0"/> </process> </operator> <connect from_op="Generate Data" from_port="output" to_op="Loop Attributes" to_port="example set"/> <connect from_op="Loop Attributes" from_port="example set" to_port="result 1"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="sink_result 1" spacing="0"/> <portSpacing port="sink_result 2" spacing="0"/> </process> </operator></process>
<?xml version="1.0" encoding="UTF-8"?><process version="9.5.001"> <context> <input/> <output/> <macros/> </context> <operator activated="true" class="process" compatibility="9.5.001" expanded="true" name="Process"> <parameter key="logverbosity" value="init"/> <parameter key="random_seed" value="-1"/> <parameter key="send_mail" value="never"/> <parameter key="notification_email" value=""/> <parameter key="process_duration_for_mail" value="30"/> <parameter key="encoding" value="SYSTEM"/> <process expanded="true"> <operator activated="true" breakpoints="after" class="generate_data" compatibility="7.1.001" expanded="true" height="68" name="Generate Data" width="90" x="45" y="34"> <parameter key="target_function" value="random"/> <parameter key="number_examples" value="100"/> <parameter key="number_of_attributes" value="5"/> <parameter key="attributes_lower_bound" value="-10.0"/> <parameter key="attributes_upper_bound" value="10.0"/> <parameter key="gaussian_standard_deviation" value="10.0"/> <parameter key="largest_radius" value="10.0"/> <parameter key="use_local_random_seed" value="false"/> <parameter key="local_random_seed" value="1992"/> <parameter key="datamanagement" value="double_array"/> <parameter key="data_management" value="auto"/> </operator> <operator activated="true" breakpoints="after" class="set_role" compatibility="9.5.001" expanded="true" height="82" name="Set Role (3)" width="90" x="179" y="34"> <parameter key="attribute_name" value="label"/> <parameter key="target_role" value="regular"/> <list key="set_additional_roles"/> <description align="center" color="transparent" colored="false" width="126">this sets the label attribute to &quot;regular&quot;</description> </operator> <operator activated="true" class="time_series:multi_label_model_learner" compatibility="9.5.000" expanded="true" height="82" name="Multi Label Modeling" width="90" x="313" y="34"> <parameter key="attribute_filter_type" value="all"/> <parameter key="attribute" value=""/> <parameter key="attributes" value=""/> <parameter key="use_except_expression" value="false"/> <parameter key="value_type" value="attribute_value"/> <parameter key="use_value_type_exception" value="false"/> <parameter key="except_value_type" value="time"/> <parameter key="block_type" value="attribute_block"/> <parameter key="use_block_type_exception" value="false"/> <parameter key="except_block_type" value="value_matrix_row_start"/> <parameter key="invert_selection" value="false"/> <parameter key="include_special_attributes" value="true"/> <parameter key="add_macros" value="false"/> <parameter key="current_label_name_macro" value="current_label_attribute"/> <parameter key="current_label_type_macro" value="current_label_type"/> <parameter key="enable_parallel_execution" value="true"/> <process expanded="true"> <operator activated="true" class="support_vector_machine" compatibility="9.5.001" expanded="true" height="124" name="SVM (2)" width="90" x="45" y="34"> <parameter key="kernel_type" value="dot"/> <parameter key="kernel_gamma" value="1.0"/> <parameter key="kernel_sigma1" value="1.0"/> <parameter key="kernel_sigma2" value="0.0"/> <parameter key="kernel_sigma3" value="2.0"/> <parameter key="kernel_shift" value="1.0"/> <parameter key="kernel_degree" value="2.0"/> <parameter key="kernel_a" value="1.0"/> <parameter key="kernel_b" value="0.0"/> <parameter key="kernel_cache" value="200"/> <parameter key="C" value="0.0"/> <parameter key="convergence_epsilon" value="0.001"/> <parameter key="max_iterations" value="100000"/> <parameter key="scale" value="true"/> <parameter key="calculate_weights" value="true"/> <parameter key="return_optimization_performance" value="true"/> <parameter key="L_pos" value="1.0"/> <parameter key="L_neg" value="1.0"/> <parameter key="epsilon" value="0.0"/> <parameter key="epsilon_plus" value="0.0"/> <parameter key="epsilon_minus" value="0.0"/> <parameter key="balance_cost" value="false"/> <parameter key="quadratic_loss_pos" value="false"/> <parameter key="quadratic_loss_neg" value="false"/> <parameter key="estimate_performance" value="false"/> </operator> <connect from_port="training set" to_op="SVM (2)" to_port="training set"/> <connect from_op="SVM (2)" from_port="model" to_port="model"/> <portSpacing port="source_training set" spacing="0"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="sink_model" spacing="0"/> <portSpacing port="sink_output 1" spacing="0"/> </process> </operator> <connect from_op="Generate Data" from_port="output" to_op="Set Role (3)" to_port="example set input"/> <connect from_op="Set Role (3)" from_port="example set output" to_op="Multi Label Modeling" to_port="training set"/> <connect from_op="Multi Label Modeling" from_port="model" to_port="result 1"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="sink_result 1" spacing="0"/> <portSpacing port="sink_result 2" spacing="0"/> </process> </operator> </process>