🎉Community Raffle - Win $25

An exclusive raffle opportunity for active members like you! Complete your profile, answer questions and get your first accepted badge to enter the raffle.
Join and Win

outofmemory problem

User: "hodeffd"
New Altair Community Member
Updated by Jocelyn
i am a newbie(student) with this software, i had saw some tutorials and i reached some info about this software
i have a project about text mining, i was given 2 classes of texts sets  and another texts set that is needed to be classified to one of the classes

i have done this:
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<process version="5.2.002">
 <context>
   <input/>
   <output/>
   <macros/>
 </context>
 <operator activated="true" class="process" compatibility="5.2.002" expanded="true" name="Process">
   <process expanded="true" height="588" width="968">
     <operator activated="true" class="text:process_document_from_file" compatibility="5.2.001" expanded="true" height="76" name="Process Documents from Files" width="90" x="84" y="179">
       <list key="text_directories">
         <parameter key="auth" value="C:\david computer backup\david university\year 3\machine learning\texts\auth"/>
         <parameter key="other" value="C:\david computer backup\david university\year 3\machine learning\texts\other"/>
       </list>
       <process expanded="true">
         <portSpacing port="source_document" spacing="0"/>
         <portSpacing port="sink_document 1" spacing="0"/>
       </process>
     </operator>
     <operator activated="true" class="select_attributes" compatibility="5.2.002" expanded="true" height="76" name="Select Attributes" width="90" x="179" y="120">
       <parameter key="attribute_filter_type" value="no_missing_values"/>
     </operator>
     <operator activated="true" class="set_role" compatibility="5.2.002" expanded="true" height="76" name="Set Role" width="90" x="282" y="117">
       <parameter key="name" value="label"/>
       <parameter key="target_role" value="label"/>
       <list key="set_additional_roles"/>
     </operator>
     <operator activated="true" class="x_validation" compatibility="5.2.002" expanded="true" height="112" name="Validation" width="90" x="447" y="120">
       <process expanded="true" height="588" width="459">
         <operator activated="true" class="decision_tree" compatibility="5.2.002" expanded="true" height="76" name="Decision Tree" width="90" x="180" y="138"/>
         <connect from_port="training" to_op="Decision Tree" to_port="training set"/>
         <connect from_op="Decision Tree" from_port="model" to_port="model"/>
         <portSpacing port="source_training" spacing="0"/>
         <portSpacing port="sink_model" spacing="0"/>
         <portSpacing port="sink_through 1" spacing="0"/>
       </process>
       <process expanded="true" height="588" width="459">
         <operator activated="true" class="apply_model" compatibility="5.2.002" expanded="true" height="76" name="Apply Model" width="90" x="76" y="147">
           <list key="application_parameters"/>
         </operator>
         <operator activated="true" class="performance" compatibility="5.2.002" expanded="true" height="76" name="Performance" width="90" x="180" y="255"/>
         <connect from_port="model" to_op="Apply Model" to_port="model"/>
         <connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/>
         <connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/>
         <connect from_op="Performance" from_port="performance" to_port="averagable 1"/>
         <portSpacing port="source_model" spacing="0"/>
         <portSpacing port="source_test set" spacing="0"/>
         <portSpacing port="source_through 1" spacing="0"/>
         <portSpacing port="sink_averagable 1" spacing="0"/>
         <portSpacing port="sink_averagable 2" spacing="0"/>
       </process>
     </operator>
     <connect from_op="Process Documents from Files" from_port="example set" to_op="Select Attributes" to_port="example set input"/>
     <connect from_op="Process Documents from Files" from_port="word list" to_port="result 2"/>
     <connect from_op="Select Attributes" from_port="example set output" to_op="Set Role" to_port="example set input"/>
     <connect from_op="Set Role" from_port="example set output" to_op="Validation" to_port="training"/>
     <connect from_op="Validation" from_port="training" to_port="result 1"/>
     <portSpacing port="source_input 1" spacing="0"/>
     <portSpacing port="sink_result 1" spacing="0"/>
     <portSpacing port="sink_result 2" spacing="0"/>
     <portSpacing port="sink_result 3" spacing="0"/>
   </process>
 </operator>
</process>
just like in this tuttorial: http://vancouverdata.blogspot.com/2010/11/text-analytics-with-rapidminer-part-5.html

the problem is the data is huge, so i get this error:

sorry for the long post:


Stack trace:
------------

Exception: java.lang.RuntimeException
Message: Cannot clone com.rapidminer.example.set.SplittedExampleSet: java.lang.reflect.InvocationTargetException. Target: java.lang.RuntimeException: Cannot clone com.rapidminer.example.set.SimpleExampleSet: java.lang.reflect.InvocationTargetException. Target: java.lang.OutOfMemoryError: GC overhead limit exceeded. Cause: java.lang.OutOfMemoryError: GC overhead limit exceeded.. Cause: java.lang.RuntimeException: Cannot clone com.rapidminer.example.set.SimpleExampleSet: java.lang.reflect.InvocationTargetException. Target: java.lang.OutOfMemoryError: GC overhead limit exceeded. Cause: java.lang.OutOfMemoryError: GC overhead limit exceeded..
Stack trace:
 com.rapidminer.example.set.AbstractExampleSet.clone(AbstractExampleSet.java:375)
 com.rapidminer.operator.learner.tree.TreeBuilder.learnTree(TreeBuilder.java:90)
 com.rapidminer.operator.learner.tree.AbstractTreeLearner.learn(AbstractTreeLearner.java:119)
 com.rapidminer.operator.learner.AbstractLearner.doWork(AbstractLearner.java:152)
 com.rapidminer.operator.Operator.execute(Operator.java:833)
 com.rapidminer.operator.execution.SimpleUnitExecutor.execute(SimpleUnitExecutor.java:51)
 com.rapidminer.operator.ExecutionUnit.execute(ExecutionUnit.java:709)
 com.rapidminer.operator.validation.ValidationChain.executeLearner(ValidationChain.java:214)
 com.rapidminer.operator.validation.ValidationChain.learn(ValidationChain.java:305)
 com.rapidminer.operator.validation.XValidation.performIteration(XValidation.java:159)
 com.rapidminer.operator.validation.XValidation.estimatePerformance(XValidation.java:151)
 com.rapidminer.operator.validation.ValidationChain.doWork(ValidationChain.java:273)
 com.rapidminer.operator.Operator.execute(Operator.java:833)
 com.rapidminer.operator.execution.SimpleUnitExecutor.execute(SimpleUnitExecutor.java:51)
 com.rapidminer.operator.ExecutionUnit.execute(ExecutionUnit.java:709)
 com.rapidminer.operator.OperatorChain.doWork(OperatorChain.java:379)
 com.rapidminer.operator.Operator.execute(Operator.java:833)
 com.rapidminer.Process.run(Process.java:925)
 com.rapidminer.Process.run(Process.java:848)
 com.rapidminer.Process.run(Process.java:807)
 com.rapidminer.Process.run(Process.java:802)
 com.rapidminer.Process.run(Process.java:792)
 com.rapidminer.gui.ProcessThread.run(ProcessThread.java:63)



Process:
------------

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<process version="5.2.002">
 <context>
   <input/>
   <output/>
   <macros/>
 </context>
 <operator activated="true" class="process" compatibility="5.2.002" expanded="true" name="Process">
   <parameter key="logverbosity" value="init"/>
   <parameter key="random_seed" value="2001"/>
   <parameter key="send_mail" value="never"/>
   <parameter key="notification_email" value=""/>
   <parameter key="process_duration_for_mail" value="30"/>
   <parameter key="encoding" value="UTF-8"/>
   <parameter key="parallelize_main_process" value="false"/>
   <process expanded="true" height="588" width="968">
     <operator activated="true" class="text:process_document_from_file" compatibility="5.2.001" expanded="true" height="76" name="Process Documents from Files" width="90" x="84" y="179">
       <list key="text_directories">
         <parameter key="auth" value="C:\david computer backup\david university\year 3\machine learning\texts\auth"/>
         <parameter key="other" value="C:\david computer backup\david university\year 3\machine learning\texts\other"/>
       </list>
       <parameter key="file_pattern" value="*"/>
       <parameter key="extract_text_only" value="true"/>
       <parameter key="use_file_extension_as_type" value="true"/>
       <parameter key="content_type" value="txt"/>
       <parameter key="encoding" value="UTF-8"/>
       <parameter key="create_word_vector" value="true"/>
       <parameter key="vector_creation" value="TF-IDF"/>
       <parameter key="add_meta_information" value="true"/>
       <parameter key="keep_text" value="false"/>
       <parameter key="prune_method" value="none"/>
       <parameter key="prunde_below_percent" value="3.0"/>
       <parameter key="prune_above_percent" value="30.0"/>
       <parameter key="prune_below_rank" value="0.05"/>
       <parameter key="prune_above_rank" value="0.05"/>
       <parameter key="datamanagement" value="double_sparse_array"/>
       <parameter key="parallelize_vector_creation" value="false"/>
       <process expanded="true" height="588" width="968">
         <operator activated="true" class="text:tokenize" compatibility="5.2.001" expanded="true" height="60" name="Tokenize" width="90" x="74" y="145">
           <parameter key="mode" value="non letters"/>
           <parameter key="characters" value=".:"/>
           <parameter key="language" value="English"/>
           <parameter key="max_token_length" value="3"/>
         </operator>
         <connect from_port="document" to_op="Tokenize" to_port="document"/>
         <connect from_op="Tokenize" from_port="document" to_port="document 1"/>
         <portSpacing port="source_document" spacing="0"/>
         <portSpacing port="sink_document 1" spacing="0"/>
         <portSpacing port="sink_document 2" spacing="0"/>
       </process>
     </operator>
     <operator activated="true" class="select_attributes" compatibility="5.2.002" expanded="true" height="76" name="Select Attributes" width="90" x="179" y="30">
       <parameter key="attribute_filter_type" value="no_missing_values"/>
       <parameter key="attribute" value=""/>
       <parameter key="attributes" value=""/>
       <parameter key="use_except_expression" value="false"/>
       <parameter key="value_type" value="attribute_value"/>
       <parameter key="use_value_type_exception" value="false"/>
       <parameter key="except_value_type" value="time"/>
       <parameter key="block_type" value="attribute_block"/>
       <parameter key="use_block_type_exception" value="false"/>
       <parameter key="except_block_type" value="value_matrix_row_start"/>
       <parameter key="invert_selection" value="false"/>
       <parameter key="include_special_attributes" value="false"/>
     </operator>
     <operator activated="true" class="set_role" compatibility="5.2.002" expanded="true" height="76" name="Set Role" width="90" x="313" y="30">
       <parameter key="name" value="label"/>
       <parameter key="target_role" value="label"/>
       <list key="set_additional_roles"/>
     </operator>
     <operator activated="true" class="x_validation" compatibility="5.2.002" expanded="true" height="112" name="Validation" width="90" x="447" y="30">
       <parameter key="create_complete_model" value="false"/>
       <parameter key="average_performances_only" value="true"/>
       <parameter key="leave_one_out" value="false"/>
       <parameter key="number_of_validations" value="10"/>
       <parameter key="sampling_type" value="stratified sampling"/>
       <parameter key="use_local_random_seed" value="false"/>
       <parameter key="local_random_seed" value="1992"/>
       <parameter key="parallelize_training" value="false"/>
       <parameter key="parallelize_testing" value="false"/>
       <process expanded="true" height="588" width="459">
         <operator activated="true" class="decision_tree" compatibility="5.2.002" expanded="true" height="76" name="Decision Tree" width="90" x="180" y="138">
           <parameter key="criterion" value="gain_ratio"/>
           <parameter key="minimal_size_for_split" value="4"/>
           <parameter key="minimal_leaf_size" value="2"/>
           <parameter key="minimal_gain" value="0.1"/>
           <parameter key="maximal_depth" value="20"/>
           <parameter key="confidence" value="0.25"/>
           <parameter key="number_of_prepruning_alternatives" value="3"/>
           <parameter key="no_pre_pruning" value="false"/>
           <parameter key="no_pruning" value="false"/>
         </operator>
         <connect from_port="training" to_op="Decision Tree" to_port="training set"/>
         <connect from_op="Decision Tree" from_port="model" to_port="model"/>
         <portSpacing port="source_training" spacing="0"/>
         <portSpacing port="sink_model" spacing="0"/>
         <portSpacing port="sink_through 1" spacing="0"/>
       </process>
       <process expanded="true" height="588" width="459">
         <operator activated="true" class="apply_model" compatibility="5.2.002" expanded="true" height="76" name="Apply Model" width="90" x="76" y="147">
           <list key="application_parameters"/>
           <parameter key="create_view" value="false"/>
         </operator>
         <operator activated="true" class="performance" compatibility="5.2.002" expanded="true" height="76" name="Performance" width="90" x="180" y="255">
           <parameter key="use_example_weights" value="true"/>
         </operator>
         <connect from_port="model" to_op="Apply Model" to_port="model"/>
         <connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/>
         <connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/>
         <connect from_op="Performance" from_port="performance" to_port="averagable 1"/>
         <portSpacing port="source_model" spacing="0"/>
         <portSpacing port="source_test set" spacing="0"/>
         <portSpacing port="source_through 1" spacing="0"/>
         <portSpacing port="sink_averagable 1" spacing="0"/>
         <portSpacing port="sink_averagable 2" spacing="0"/>
       </process>
     </operator>
     <connect from_op="Process Documents from Files" from_port="example set" to_op="Select Attributes" to_port="example set input"/>
     <connect from_op="Process Documents from Files" from_port="word list" to_port="result 2"/>
     <connect from_op="Select Attributes" from_port="example set output" to_op="Set Role" to_port="example set input"/>
     <connect from_op="Set Role" from_port="example set output" to_op="Validation" to_port="training"/>
     <connect from_op="Validation" from_port="training" to_port="result 1"/>
     <portSpacing port="source_input 1" spacing="0"/>
     <portSpacing port="sink_result 1" spacing="0"/>
     <portSpacing port="sink_result 2" spacing="0"/>
     <portSpacing port="sink_result 3" spacing="0"/>
   </process>
 </operator>
</process>

Find more posts tagged with