i am a newbie(student) with this software, i had saw some tutorials and i reached some info about this software
i have a project about text mining, i was given 2 classes of texts sets and another texts set that is needed to be classified to one of the classes
i have done this:
<?xml version="1.0" encoding="UTF-8" standalone="no"?> <process version="5.2.002"> <context> <input/> <output/> <macros/> </context> <operator activated="true" class="process" compatibility="5.2.002" expanded="true" name="Process"> <process expanded="true" height="588" width="968"> <operator activated="true" class="text:process_document_from_file" compatibility="5.2.001" expanded="true" height="76" name="Process Documents from Files" width="90" x="84" y="179"> <list key="text_directories"> <parameter key="auth" value="C:\david computer backup\david university\year 3\machine learning\texts\auth"/> <parameter key="other" value="C:\david computer backup\david university\year 3\machine learning\texts\other"/> </list> <process expanded="true"> <portSpacing port="source_document" spacing="0"/> <portSpacing port="sink_document 1" spacing="0"/> </process> </operator> <operator activated="true" class="select_attributes" compatibility="5.2.002" expanded="true" height="76" name="Select Attributes" width="90" x="179" y="120"> <parameter key="attribute_filter_type" value="no_missing_values"/> </operator> <operator activated="true" class="set_role" compatibility="5.2.002" expanded="true" height="76" name="Set Role" width="90" x="282" y="117"> <parameter key="name" value="label"/> <parameter key="target_role" value="label"/> <list key="set_additional_roles"/> </operator> <operator activated="true" class="x_validation" compatibility="5.2.002" expanded="true" height="112" name="Validation" width="90" x="447" y="120"> <process expanded="true" height="588" width="459"> <operator activated="true" class="decision_tree" compatibility="5.2.002" expanded="true" height="76" name="Decision Tree" width="90" x="180" y="138"/> <connect from_port="training" to_op="Decision Tree" to_port="training set"/> <connect from_op="Decision Tree" from_port="model" to_port="model"/> <portSpacing port="source_training" spacing="0"/> <portSpacing port="sink_model" spacing="0"/> <portSpacing port="sink_through 1" spacing="0"/> </process> <process expanded="true" height="588" width="459"> <operator activated="true" class="apply_model" compatibility="5.2.002" expanded="true" height="76" name="Apply Model" width="90" x="76" y="147"> <list key="application_parameters"/> </operator> <operator activated="true" class="performance" compatibility="5.2.002" expanded="true" height="76" name="Performance" width="90" x="180" y="255"/> <connect from_port="model" to_op="Apply Model" to_port="model"/> <connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/> <connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/> <connect from_op="Performance" from_port="performance" to_port="averagable 1"/> <portSpacing port="source_model" spacing="0"/> <portSpacing port="source_test set" spacing="0"/> <portSpacing port="source_through 1" spacing="0"/> <portSpacing port="sink_averagable 1" spacing="0"/> <portSpacing port="sink_averagable 2" spacing="0"/> </process> </operator> <connect from_op="Process Documents from Files" from_port="example set" to_op="Select Attributes" to_port="example set input"/> <connect from_op="Process Documents from Files" from_port="word list" to_port="result 2"/> <connect from_op="Select Attributes" from_port="example set output" to_op="Set Role" to_port="example set input"/> <connect from_op="Set Role" from_port="example set output" to_op="Validation" to_port="training"/> <connect from_op="Validation" from_port="training" to_port="result 1"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="sink_result 1" spacing="0"/> <portSpacing port="sink_result 2" spacing="0"/> <portSpacing port="sink_result 3" spacing="0"/> </process> </operator> </process>
|
just like in this tuttorial:
http://vancouverdata.blogspot.com/2010/11/text-analytics-with-rapidminer-part-5.htmlthe problem is the data is huge, so i get this error:
sorry for the long post:
Stack trace:
------------
Exception: java.lang.RuntimeException
Message: Cannot clone com.rapidminer.example.set.SplittedExampleSet: java.lang.reflect.InvocationTargetException. Target: java.lang.RuntimeException: Cannot clone com.rapidminer.example.set.SimpleExampleSet: java.lang.reflect.InvocationTargetException. Target: java.lang.OutOfMemoryError: GC overhead limit exceeded. Cause: java.lang.OutOfMemoryError: GC overhead limit exceeded.. Cause: java.lang.RuntimeException: Cannot clone com.rapidminer.example.set.SimpleExampleSet: java.lang.reflect.InvocationTargetException. Target: java.lang.OutOfMemoryError: GC overhead limit exceeded. Cause: java.lang.OutOfMemoryError: GC overhead limit exceeded..
Stack trace:
com.rapidminer.example.set.AbstractExampleSet.clone(AbstractExampleSet.java:375)
com.rapidminer.operator.learner.tree.TreeBuilder.learnTree(TreeBuilder.java:90)
com.rapidminer.operator.learner.tree.AbstractTreeLearner.learn(AbstractTreeLearner.java:119)
com.rapidminer.operator.learner.AbstractLearner.doWork(AbstractLearner.java:152)
com.rapidminer.operator.Operator.execute(Operator.java:833)
com.rapidminer.operator.execution.SimpleUnitExecutor.execute(SimpleUnitExecutor.java:51)
com.rapidminer.operator.ExecutionUnit.execute(ExecutionUnit.java:709)
com.rapidminer.operator.validation.ValidationChain.executeLearner(ValidationChain.java:214)
com.rapidminer.operator.validation.ValidationChain.learn(ValidationChain.java:305)
com.rapidminer.operator.validation.XValidation.performIteration(XValidation.java:159)
com.rapidminer.operator.validation.XValidation.estimatePerformance(XValidation.java:151)
com.rapidminer.operator.validation.ValidationChain.doWork(ValidationChain.java:273)
com.rapidminer.operator.Operator.execute(Operator.java:833)
com.rapidminer.operator.execution.SimpleUnitExecutor.execute(SimpleUnitExecutor.java:51)
com.rapidminer.operator.ExecutionUnit.execute(ExecutionUnit.java:709)
com.rapidminer.operator.OperatorChain.doWork(OperatorChain.java:379)
com.rapidminer.operator.Operator.execute(Operator.java:833)
com.rapidminer.Process.run(Process.java:925)
com.rapidminer.Process.run(Process.java:848)
com.rapidminer.Process.run(Process.java:807)
com.rapidminer.Process.run(Process.java:802)
com.rapidminer.Process.run(Process.java:792)
com.rapidminer.gui.ProcessThread.run(ProcessThread.java:63)
Process:
------------
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<process version="5.2.002">
<context>
<input/>
<output/>
<macros/>
</context>
<operator activated="true" class="process" compatibility="5.2.002" expanded="true" name="Process">
<parameter key="logverbosity" value="init"/>
<parameter key="random_seed" value="2001"/>
<parameter key="send_mail" value="never"/>
<parameter key="notification_email" value=""/>
<parameter key="process_duration_for_mail" value="30"/>
<parameter key="encoding" value="UTF-8"/>
<parameter key="parallelize_main_process" value="false"/>
<process expanded="true" height="588" width="968">
<operator activated="true" class="text:process_document_from_file" compatibility="5.2.001" expanded="true" height="76" name="Process Documents from Files" width="90" x="84" y="179">
<list key="text_directories">
<parameter key="auth" value="C:\david computer backup\david university\year 3\machine learning\texts\auth"/>
<parameter key="other" value="C:\david computer backup\david university\year 3\machine learning\texts\other"/>
</list>
<parameter key="file_pattern" value="*"/>
<parameter key="extract_text_only" value="true"/>
<parameter key="use_file_extension_as_type" value="true"/>
<parameter key="content_type" value="txt"/>
<parameter key="encoding" value="UTF-8"/>
<parameter key="create_word_vector" value="true"/>
<parameter key="vector_creation" value="TF-IDF"/>
<parameter key="add_meta_information" value="true"/>
<parameter key="keep_text" value="false"/>
<parameter key="prune_method" value="none"/>
<parameter key="prunde_below_percent" value="3.0"/>
<parameter key="prune_above_percent" value="30.0"/>
<parameter key="prune_below_rank" value="0.05"/>
<parameter key="prune_above_rank" value="0.05"/>
<parameter key="datamanagement" value="double_sparse_array"/>
<parameter key="parallelize_vector_creation" value="false"/>
<process expanded="true" height="588" width="968">
<operator activated="true" class="text:tokenize" compatibility="5.2.001" expanded="true" height="60" name="Tokenize" width="90" x="74" y="145">
<parameter key="mode" value="non letters"/>
<parameter key="characters" value=".:"/>
<parameter key="language" value="English"/>
<parameter key="max_token_length" value="3"/>
</operator>
<connect from_port="document" to_op="Tokenize" to_port="document"/>
<connect from_op="Tokenize" from_port="document" to_port="document 1"/>
<portSpacing port="source_document" spacing="0"/>
<portSpacing port="sink_document 1" spacing="0"/>
<portSpacing port="sink_document 2" spacing="0"/>
</process>
</operator>
<operator activated="true" class="select_attributes" compatibility="5.2.002" expanded="true" height="76" name="Select Attributes" width="90" x="179" y="30">
<parameter key="attribute_filter_type" value="no_missing_values"/>
<parameter key="attribute" value=""/>
<parameter key="attributes" value=""/>
<parameter key="use_except_expression" value="false"/>
<parameter key="value_type" value="attribute_value"/>
<parameter key="use_value_type_exception" value="false"/>
<parameter key="except_value_type" value="time"/>
<parameter key="block_type" value="attribute_block"/>
<parameter key="use_block_type_exception" value="false"/>
<parameter key="except_block_type" value="value_matrix_row_start"/>
<parameter key="invert_selection" value="false"/>
<parameter key="include_special_attributes" value="false"/>
</operator>
<operator activated="true" class="set_role" compatibility="5.2.002" expanded="true" height="76" name="Set Role" width="90" x="313" y="30">
<parameter key="name" value="label"/>
<parameter key="target_role" value="label"/>
<list key="set_additional_roles"/>
</operator>
<operator activated="true" class="x_validation" compatibility="5.2.002" expanded="true" height="112" name="Validation" width="90" x="447" y="30">
<parameter key="create_complete_model" value="false"/>
<parameter key="average_performances_only" value="true"/>
<parameter key="leave_one_out" value="false"/>
<parameter key="number_of_validations" value="10"/>
<parameter key="sampling_type" value="stratified sampling"/>
<parameter key="use_local_random_seed" value="false"/>
<parameter key="local_random_seed" value="1992"/>
<parameter key="parallelize_training" value="false"/>
<parameter key="parallelize_testing" value="false"/>
<process expanded="true" height="588" width="459">
<operator activated="true" class="decision_tree" compatibility="5.2.002" expanded="true" height="76" name="Decision Tree" width="90" x="180" y="138">
<parameter key="criterion" value="gain_ratio"/>
<parameter key="minimal_size_for_split" value="4"/>
<parameter key="minimal_leaf_size" value="2"/>
<parameter key="minimal_gain" value="0.1"/>
<parameter key="maximal_depth" value="20"/>
<parameter key="confidence" value="0.25"/>
<parameter key="number_of_prepruning_alternatives" value="3"/>
<parameter key="no_pre_pruning" value="false"/>
<parameter key="no_pruning" value="false"/>
</operator>
<connect from_port="training" to_op="Decision Tree" to_port="training set"/>
<connect from_op="Decision Tree" from_port="model" to_port="model"/>
<portSpacing port="source_training" spacing="0"/>
<portSpacing port="sink_model" spacing="0"/>
<portSpacing port="sink_through 1" spacing="0"/>
</process>
<process expanded="true" height="588" width="459">
<operator activated="true" class="apply_model" compatibility="5.2.002" expanded="true" height="76" name="Apply Model" width="90" x="76" y="147">
<list key="application_parameters"/>
<parameter key="create_view" value="false"/>
</operator>
<operator activated="true" class="performance" compatibility="5.2.002" expanded="true" height="76" name="Performance" width="90" x="180" y="255">
<parameter key="use_example_weights" value="true"/>
</operator>
<connect from_port="model" to_op="Apply Model" to_port="model"/>
<connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/>
<connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/>
<connect from_op="Performance" from_port="performance" to_port="averagable 1"/>
<portSpacing port="source_model" spacing="0"/>
<portSpacing port="source_test set" spacing="0"/>
<portSpacing port="source_through 1" spacing="0"/>
<portSpacing port="sink_averagable 1" spacing="0"/>
<portSpacing port="sink_averagable 2" spacing="0"/>
</process>
</operator>
<connect from_op="Process Documents from Files" from_port="example set" to_op="Select Attributes" to_port="example set input"/>
<connect from_op="Process Documents from Files" from_port="word list" to_port="result 2"/>
<connect from_op="Select Attributes" from_port="example set output" to_op="Set Role" to_port="example set input"/>
<connect from_op="Set Role" from_port="example set output" to_op="Validation" to_port="training"/>
<connect from_op="Validation" from_port="training" to_port="result 1"/>
<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="sink_result 1" spacing="0"/>
<portSpacing port="sink_result 2" spacing="0"/>
<portSpacing port="sink_result 3" spacing="0"/>
</process>
</operator>
</process>