Bayesian boosting model application
jevin
New Altair Community Member
Hello,
I am building prediction models using Bayesian boosting with decision trees technique. Below is the process I have set up:
Current output is set of 10 models. How do I convert those 10 models into a final tree scheme to implement in production?
Please pardon my format of question - this is my first post here.
Thanks,
I am building prediction models using Bayesian boosting with decision trees technique. Below is the process I have set up:
My question: Is there a way to extract final model (in this case decision tree) logic in either SQL or other coding version which I can use to implement?
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<process version="5.2.000">
<context>
<input/>
<output/>
<macros/>
</context>
<operator activated="true" class="process" compatibility="5.2.000" expanded="true" name="Process">
<process expanded="true" height="460" width="547">
<operator activated="true" class="retrieve" compatibility="5.2.000" expanded="true" height="60" name="Retrieve" width="90" x="112" y="165">
<parameter key="repository_entry" value="CounterStrike_V2"/>
</operator>
<operator activated="true" class="split_validation" compatibility="5.2.000" expanded="true" height="112" name="Validation" width="90" x="313" y="165">
<process expanded="true" height="813" width="316">
<operator activated="true" class="bayesian_boosting" compatibility="5.2.000" expanded="true" height="76" name="Bayesian Boosting" width="90" x="112" y="120">
<process expanded="true" height="813" width="682">
<operator activated="true" class="discretize_by_user_specification" compatibility="5.2.000" expanded="true" name="Discretize">
<parameter key="attribute_filter_type" value="regular_expression"/>
<parameter key="regular_expression" value="frozen"/>
<parameter key="include_special_attributes" value="true"/>
<list key="classes">
<parameter key="first" value="-Infinity"/>
<parameter key="last" value="Infinity"/>
</list>
</operator>
<operator activated="true" class="decision_tree" compatibility="5.2.000" expanded="true" height="76" name="Decision Tree" width="90" x="296" y="30"/>
<connect from_port="training set" to_op="Discretize" to_port="example set input"/>
<connect from_op="Discretize" from_port="example set output" to_op="Decision Tree" to_port="training set"/>
<connect from_op="Decision Tree" from_port="model" to_port="model"/>
<portSpacing port="source_training set" spacing="0"/>
<portSpacing port="sink_model" spacing="0"/>
</process>
</operator>
<connect from_port="training" to_op="Bayesian Boosting" to_port="training set"/>
<connect from_op="Bayesian Boosting" from_port="model" to_port="model"/>
<portSpacing port="source_training" spacing="0"/>
<portSpacing port="sink_model" spacing="0"/>
<portSpacing port="sink_through 1" spacing="0"/>
</process>
<process expanded="true" height="813" width="316">
<operator activated="true" class="apply_model" compatibility="5.2.000" expanded="true" height="76" name="Apply Model" width="90" x="45" y="120">
<list key="application_parameters"/>
</operator>
<operator activated="true" class="performance" compatibility="5.2.000" expanded="true" height="76" name="Performance" width="90" x="179" y="210"/>
<connect from_port="model" to_op="Apply Model" to_port="model"/>
<connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/>
<connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/>
<connect from_op="Performance" from_port="performance" to_port="averagable 1"/>
<portSpacing port="source_model" spacing="72"/>
<portSpacing port="source_test set" spacing="18"/>
<portSpacing port="source_through 1" spacing="0"/>
<portSpacing port="sink_averagable 1" spacing="0"/>
<portSpacing port="sink_averagable 2" spacing="0"/>
</process>
</operator>
<connect from_op="Retrieve" from_port="output" to_op="Validation" to_port="training"/>
<connect from_op="Validation" from_port="model" to_port="result 1"/>
<connect from_op="Validation" from_port="averagable 1" to_port="result 2"/>
<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="sink_result 1" spacing="36"/>
<portSpacing port="sink_result 2" spacing="72"/>
<portSpacing port="sink_result 3" spacing="18"/>
</process>
</operator>
</process>
Current output is set of 10 models. How do I convert those 10 models into a final tree scheme to implement in production?
Please pardon my format of question - this is my first post here.
Thanks,
Tagged:
0
Answers
-
Hi,
if you are coding in java and your project license is compatible to AGPL, the easiest way would be to include RapidMiner in your project. Then you could programatically run a process to apply the trained Bayesian Boosting model on your data.
Best,
Marius0