I did a time series prediction and applied the "forecasting performance" operator. In order to fine tune the parameters, I used the "Optimize Performance (Grid)" to compare the performance, along with a "Log" operator to record all the parameters and output performance. I found it's strange that the prediction_trend_accuracy is different with what I got originally for the same set of parameters. I created a sample process for this problem. The prediction_trend_accuracy shown in the "performance grid" is different with the one recorded in "Log" window. Anybody can tell me where I'm wrong?
By the way, sometimes I got the prediction_trend_accuracy unknown. Is there anybody can explain what does it mean for "unknown"?
Thank you!
Steven
Here is the sample process:
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<process version="5.1.014">
<context>
<input/>
<output/>
<macros/>
</context>
<operator activated="true" class="process" compatibility="5.1.014" expanded="true" name="Process">
<process expanded="true" height="431" width="614">
<operator activated="true" class="generate_data" compatibility="5.1.014" expanded="true" height="60" name="Generate Data" width="90" x="25" y="163">
<parameter key="number_examples" value="50"/>
</operator>
<operator activated="true" class="series:windowing" compatibility="5.1.002" expanded="true" height="76" name="Windowing" width="90" x="246" y="165">
<parameter key="horizon" value="1"/>
<parameter key="window_size" value="3"/>
<parameter key="create_label" value="true"/>
<parameter key="label_attribute" value="label"/>
</operator>
<operator activated="true" class="optimize_parameters_grid" compatibility="5.1.014" expanded="true" height="94" name="Optimize Parameters (Grid)" width="90" x="447" y="165">
<list key="parameters">
<parameter key="W-MultilayerPerceptron.L" value="[0.1;1;3;linear]"/>
<parameter key="W-MultilayerPerceptron.M" value="[0.1;1;3;linear]"/>
</list>
<parameter key="parallelize_optimization_process" value="true"/>
<process expanded="true" height="428" width="678">
<operator activated="true" class="series:sliding_window_validation" compatibility="5.1.002" expanded="true" height="112" name="Validation" width="90" x="179" y="165">
<parameter key="training_window_width" value="5"/>
<parameter key="training_window_step_size" value="1"/>
<parameter key="test_window_width" value="5"/>
<parameter key="average_performances_only" value="false"/>
<parameter key="parallelize_training" value="true"/>
<parameter key="parallelize_testing" value="true"/>
<process expanded="true" height="428" width="323">
<operator activated="true" class="weka:W-MultilayerPerceptron" compatibility="5.1.001" expanded="true" height="76" name="W-MultilayerPerceptron" width="90" x="116" y="30">
<parameter key="L" value="1.0"/>
<parameter key="M" value="1.0"/>
</operator>
<connect from_port="training" to_op="W-MultilayerPerceptron" to_port="training set"/>
<connect from_op="W-MultilayerPerceptron" from_port="model" to_port="model"/>
<portSpacing port="source_training" spacing="0"/>
<portSpacing port="sink_model" spacing="0"/>
<portSpacing port="sink_through 1" spacing="0"/>
</process>
<process expanded="true" height="428" width="323">
<operator activated="true" class="apply_model" compatibility="5.1.014" expanded="true" height="76" name="Apply Model" width="90" x="45" y="30">
<list key="application_parameters"/>
</operator>
<operator activated="true" class="series:forecasting_performance" compatibility="5.1.002" expanded="true" height="76" name="Performance" width="90" x="112" y="165">
<parameter key="horizon" value="1"/>
</operator>
<connect from_port="model" to_op="Apply Model" to_port="model"/>
<connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/>
<connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/>
<connect from_op="Performance" from_port="performance" to_port="averagable 1"/>
<portSpacing port="source_model" spacing="0"/>
<portSpacing port="source_test set" spacing="0"/>
<portSpacing port="source_through 1" spacing="0"/>
<portSpacing port="sink_averagable 1" spacing="0"/>
<portSpacing port="sink_averagable 2" spacing="0"/>
</process>
</operator>
<operator activated="true" class="log" compatibility="5.1.014" expanded="true" height="76" name="Log" width="90" x="425" y="179">
<list key="log">
<parameter key="Performance" value="operator.Performance.value.prediction_trend_accuracy"/>
<parameter key="L" value="operator.W-MultilayerPerceptron.parameter.L"/>
<parameter key="M" value="operator.W-MultilayerPerceptron.parameter.M"/>
</list>
</operator>
<connect from_port="input 1" to_op="Validation" to_port="training"/>
<connect from_op="Validation" from_port="averagable 1" to_op="Log" to_port="through 1"/>
<connect from_op="Log" from_port="through 1" to_port="performance"/>
<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="source_input 2" spacing="0"/>
<portSpacing port="sink_performance" spacing="0"/>
<portSpacing port="sink_result 1" spacing="0"/>
</process>
</operator>
<connect from_op="Generate Data" from_port="output" to_op="Windowing" to_port="example set input"/>
<connect from_op="Windowing" from_port="example set output" to_op="Optimize Parameters (Grid)" to_port="input 1"/>
<connect from_op="Optimize Parameters (Grid)" from_port="parameter" to_port="result 1"/>
<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="sink_result 1" spacing="0"/>
<portSpacing port="sink_result 2" spacing="0"/>
</process>
</operator>
</process>