A program to recognize and reward our most engaged community members
<?xml version="1.0" encoding="UTF-8" standalone="no"?><process version="5.1.008"> <context> <input/> <output/> <macros/> </context> <operator activated="true" class="process" compatibility="5.1.008" expanded="true" name="Process"> <process expanded="true" height="359" width="815"> <operator activated="true" class="generate_data" compatibility="5.1.008" expanded="true" height="60" name="Generate Data" width="90" x="45" y="30"> <parameter key="target_function" value="sum classification"/> <parameter key="number_examples" value="500"/> </operator> <operator activated="true" class="add_noise" compatibility="5.1.008" expanded="true" height="94" name="Add Noise" width="90" x="179" y="30"> <parameter key="random_attributes" value="1"/> <list key="noise"/> </operator> <operator activated="true" class="naive_bayes" compatibility="5.1.008" expanded="true" height="76" name="Naive Bayes" width="90" x="313" y="30"/> <operator activated="true" class="generate_data" compatibility="5.1.008" expanded="true" height="60" name="Generate Data (2)" width="90" x="179" y="165"> <parameter key="target_function" value="sum classification"/> <parameter key="number_examples" value="200"/> </operator> <operator activated="true" class="add_noise" compatibility="5.1.008" expanded="true" height="94" name="Add Noise (2)" width="90" x="313" y="165"> <parameter key="random_attributes" value="1"/> <list key="noise"/> </operator> <operator activated="true" class="apply_model" compatibility="5.1.008" expanded="true" height="76" name="Apply Model" width="90" x="447" y="30"> <list key="application_parameters"/> </operator> <operator activated="true" class="rename_by_replacing" compatibility="5.1.008" expanded="true" height="76" name="Rename by Replacing" width="90" x="581" y="30"> <parameter key="include_special_attributes" value="true"/> <parameter key="replace_by" value="_"/> </operator> <operator activated="true" class="generate_attributes" compatibility="5.1.008" expanded="true" height="76" name="Generate Attributes" width="90" x="715" y="30"> <list key="function_descriptions"> <parameter key="discretized" value="if (confidence_negative_>0.8,"high","low")"/> </list> </operator> <connect from_op="Generate Data" from_port="output" to_op="Add Noise" to_port="example set input"/> <connect from_op="Add Noise" from_port="example set output" to_op="Naive Bayes" to_port="training set"/> <connect from_op="Naive Bayes" from_port="model" to_op="Apply Model" to_port="model"/> <connect from_op="Generate Data (2)" from_port="output" to_op="Add Noise (2)" to_port="example set input"/> <connect from_op="Add Noise (2)" from_port="example set output" to_op="Apply Model" to_port="unlabelled data"/> <connect from_op="Apply Model" from_port="labelled data" to_op="Rename by Replacing" to_port="example set input"/> <connect from_op="Rename by Replacing" from_port="example set output" to_op="Generate Attributes" to_port="example set input"/> <connect from_op="Generate Attributes" from_port="example set output" to_port="result 1"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="sink_result 1" spacing="0"/> <portSpacing port="sink_result 2" spacing="0"/> </process> </operator></process>
<?xml version="1.0" encoding="UTF-8" standalone="no"?><process version="5.1.008"> <context> <input/> <output/> <macros/> </context> <operator activated="true" class="process" compatibility="5.1.008" expanded="true" name="Process"> <process expanded="true" height="359" width="815"> <operator activated="true" class="generate_data" compatibility="5.1.008" expanded="true" height="60" name="Generate Data" width="90" x="45" y="30"> <parameter key="target_function" value="sum classification"/> <parameter key="number_examples" value="500"/> </operator> <operator activated="true" class="add_noise" compatibility="5.1.008" expanded="true" height="94" name="Add Noise" width="90" x="179" y="30"> <parameter key="random_attributes" value="1"/> <list key="noise"/> </operator> <operator activated="true" class="naive_bayes" compatibility="5.1.008" expanded="true" height="76" name="Naive Bayes" width="90" x="313" y="30"/> <operator activated="true" class="generate_data" compatibility="5.1.008" expanded="true" height="60" name="Generate Data (2)" width="90" x="179" y="165"> <parameter key="target_function" value="sum classification"/> <parameter key="number_examples" value="200"/> </operator> <operator activated="true" class="add_noise" compatibility="5.1.008" expanded="true" height="94" name="Add Noise (2)" width="90" x="313" y="165"> <parameter key="random_attributes" value="1"/> <list key="noise"/> </operator> <operator activated="true" class="apply_model" compatibility="5.1.008" expanded="true" height="76" name="Apply Model" width="90" x="447" y="30"> <list key="application_parameters"/> </operator> <operator activated="true" class="discretize_by_frequency" compatibility="5.1.008" expanded="true" height="94" name="Discretize" width="90" x="581" y="30"> <parameter key="attribute_filter_type" value="single"/> <parameter key="attribute" value="confidence(negative)"/> <parameter key="include_special_attributes" value="true"/> </operator> <connect from_op="Generate Data" from_port="output" to_op="Add Noise" to_port="example set input"/> <connect from_op="Add Noise" from_port="example set output" to_op="Naive Bayes" to_port="training set"/> <connect from_op="Naive Bayes" from_port="model" to_op="Apply Model" to_port="model"/> <connect from_op="Generate Data (2)" from_port="output" to_op="Add Noise (2)" to_port="example set input"/> <connect from_op="Add Noise (2)" from_port="example set output" to_op="Apply Model" to_port="unlabelled data"/> <connect from_op="Apply Model" from_port="labelled data" to_op="Discretize" to_port="example set input"/> <connect from_op="Discretize" from_port="example set output" to_port="result 1"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="sink_result 1" spacing="0"/> <portSpacing port="sink_result 2" spacing="0"/> </process> </operator></process>
Hi there,
just to add on this:
are the values indicative of how sure we are in the sense of if the confidence value is 0.785, could we say we are 78.5% confident that this prediction falls into this category?
Or is it more along the lines of 78.5% of entries like this fall into this category too?