"PCA for 101010101 series prediction"
wessel
New Altair Community Member
Dear All,
I have a process which predicts the next Boolean value given a Boolean series.
The processes first applies windowing.
Then a sliding window validation is ran.
Inside the sliding window validation PCA is applied.
After this integer {1, 0} values are converted Boolean.
And then a J48 learner is applied.
Before apply model {1, 0} values are converted yet again converted to Boolean.
This constantly converting between Boolean to integer makes the processes really slow!
Is there a way to overcome this problem?
Can we apply PCA to a Boolean data set?
Best regards,
Wessel
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<process version="5.1.006">
<context>
<input/>
<output/>
<macros/>
</context>
<operator activated="true" class="process" compatibility="5.1.006" expanded="true" name="Process">
<parameter key="parallelize_main_process" value="true"/>
<process expanded="true" height="445" width="435">
<operator activated="true" class="retrieve" compatibility="5.1.006" expanded="true" height="60" name="Retrieve" width="90" x="45" y="30">
<parameter key="repository_entry" value="DNA"/>
</operator>
<operator activated="true" class="series:windowing" compatibility="5.1.002" expanded="true" height="76" name="Windowing" width="90" x="180" y="30">
<parameter key="horizon" value="1"/>
<parameter key="create_label" value="true"/>
<parameter key="label_attribute" value="x"/>
</operator>
<operator activated="true" class="series:sliding_window_validation" compatibility="5.1.002" expanded="true" height="112" name="Validation" width="90" x="315" y="30">
<parameter key="training_window_step_size" value="100"/>
<parameter key="test_window_width" value="1"/>
<parameter key="average_performances_only" value="false"/>
<parameter key="parallelize_training" value="true"/>
<parameter key="parallelize_testing" value="true"/>
<process expanded="true" height="445" width="435">
<operator activated="true" class="principal_component_analysis" compatibility="5.1.006" expanded="true" height="94" name="PCA" width="90" x="45" y="30"/>
<operator activated="true" class="numerical_to_binominal" compatibility="5.1.006" expanded="true" height="76" name="Numerical to Binominal" width="90" x="180" y="30">
<parameter key="include_special_attributes" value="true"/>
</operator>
<operator activated="true" class="weka:W-J48" compatibility="5.1.000" expanded="true" height="76" name="W-J48" width="90" x="315" y="30"/>
<connect from_port="training" to_op="PCA" to_port="example set input"/>
<connect from_op="PCA" from_port="example set output" to_op="Numerical to Binominal" to_port="example set input"/>
<connect from_op="Numerical to Binominal" from_port="example set output" to_op="W-J48" to_port="training set"/>
<connect from_op="W-J48" from_port="model" to_port="model"/>
<portSpacing port="source_training" spacing="0"/>
<portSpacing port="sink_model" spacing="0"/>
<portSpacing port="sink_through 1" spacing="0"/>
</process>
<process expanded="true" height="445" width="435">
<operator activated="true" class="numerical_to_binominal" compatibility="5.1.006" expanded="true" height="76" name="Numerical to Binominal (2)" width="90" x="45" y="75">
<parameter key="include_special_attributes" value="true"/>
</operator>
<operator activated="true" class="apply_model" compatibility="5.1.006" expanded="true" height="76" name="Apply Model" width="90" x="180" y="30">
<list key="application_parameters"/>
</operator>
<operator activated="true" class="performance_classification" compatibility="5.1.006" expanded="true" height="76" name="Performance (2)" width="90" x="315" y="30">
<parameter key="accuracy" value="false"/>
<parameter key="kappa" value="true"/>
<list key="class_weights"/>
</operator>
<connect from_port="model" to_op="Apply Model" to_port="model"/>
<connect from_port="test set" to_op="Numerical to Binominal (2)" to_port="example set input"/>
<connect from_op="Numerical to Binominal (2)" from_port="example set output" to_op="Apply Model" to_port="unlabelled data"/>
<connect from_op="Apply Model" from_port="labelled data" to_op="Performance (2)" to_port="labelled data"/>
<connect from_op="Performance (2)" from_port="performance" to_port="averagable 1"/>
<portSpacing port="source_model" spacing="0"/>
<portSpacing port="source_test set" spacing="0"/>
<portSpacing port="source_through 1" spacing="0"/>
<portSpacing port="sink_averagable 1" spacing="0"/>
<portSpacing port="sink_averagable 2" spacing="0"/>
</process>
</operator>
<connect from_op="Retrieve" from_port="output" to_op="Windowing" to_port="example set input"/>
<connect from_op="Windowing" from_port="example set output" to_op="Validation" to_port="training"/>
<connect from_op="Validation" from_port="averagable 1" to_port="result 1"/>
<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="sink_result 1" spacing="36"/>
<portSpacing port="sink_result 2" spacing="0"/>
</process>
</operator>
</process>
I have a process which predicts the next Boolean value given a Boolean series.
The processes first applies windowing.
Then a sliding window validation is ran.
Inside the sliding window validation PCA is applied.
After this integer {1, 0} values are converted Boolean.
And then a J48 learner is applied.
Before apply model {1, 0} values are converted yet again converted to Boolean.
This constantly converting between Boolean to integer makes the processes really slow!
Is there a way to overcome this problem?
Can we apply PCA to a Boolean data set?
Best regards,
Wessel
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<process version="5.1.006">
<context>
<input/>
<output/>
<macros/>
</context>
<operator activated="true" class="process" compatibility="5.1.006" expanded="true" name="Process">
<parameter key="parallelize_main_process" value="true"/>
<process expanded="true" height="445" width="435">
<operator activated="true" class="retrieve" compatibility="5.1.006" expanded="true" height="60" name="Retrieve" width="90" x="45" y="30">
<parameter key="repository_entry" value="DNA"/>
</operator>
<operator activated="true" class="series:windowing" compatibility="5.1.002" expanded="true" height="76" name="Windowing" width="90" x="180" y="30">
<parameter key="horizon" value="1"/>
<parameter key="create_label" value="true"/>
<parameter key="label_attribute" value="x"/>
</operator>
<operator activated="true" class="series:sliding_window_validation" compatibility="5.1.002" expanded="true" height="112" name="Validation" width="90" x="315" y="30">
<parameter key="training_window_step_size" value="100"/>
<parameter key="test_window_width" value="1"/>
<parameter key="average_performances_only" value="false"/>
<parameter key="parallelize_training" value="true"/>
<parameter key="parallelize_testing" value="true"/>
<process expanded="true" height="445" width="435">
<operator activated="true" class="principal_component_analysis" compatibility="5.1.006" expanded="true" height="94" name="PCA" width="90" x="45" y="30"/>
<operator activated="true" class="numerical_to_binominal" compatibility="5.1.006" expanded="true" height="76" name="Numerical to Binominal" width="90" x="180" y="30">
<parameter key="include_special_attributes" value="true"/>
</operator>
<operator activated="true" class="weka:W-J48" compatibility="5.1.000" expanded="true" height="76" name="W-J48" width="90" x="315" y="30"/>
<connect from_port="training" to_op="PCA" to_port="example set input"/>
<connect from_op="PCA" from_port="example set output" to_op="Numerical to Binominal" to_port="example set input"/>
<connect from_op="Numerical to Binominal" from_port="example set output" to_op="W-J48" to_port="training set"/>
<connect from_op="W-J48" from_port="model" to_port="model"/>
<portSpacing port="source_training" spacing="0"/>
<portSpacing port="sink_model" spacing="0"/>
<portSpacing port="sink_through 1" spacing="0"/>
</process>
<process expanded="true" height="445" width="435">
<operator activated="true" class="numerical_to_binominal" compatibility="5.1.006" expanded="true" height="76" name="Numerical to Binominal (2)" width="90" x="45" y="75">
<parameter key="include_special_attributes" value="true"/>
</operator>
<operator activated="true" class="apply_model" compatibility="5.1.006" expanded="true" height="76" name="Apply Model" width="90" x="180" y="30">
<list key="application_parameters"/>
</operator>
<operator activated="true" class="performance_classification" compatibility="5.1.006" expanded="true" height="76" name="Performance (2)" width="90" x="315" y="30">
<parameter key="accuracy" value="false"/>
<parameter key="kappa" value="true"/>
<list key="class_weights"/>
</operator>
<connect from_port="model" to_op="Apply Model" to_port="model"/>
<connect from_port="test set" to_op="Numerical to Binominal (2)" to_port="example set input"/>
<connect from_op="Numerical to Binominal (2)" from_port="example set output" to_op="Apply Model" to_port="unlabelled data"/>
<connect from_op="Apply Model" from_port="labelled data" to_op="Performance (2)" to_port="labelled data"/>
<connect from_op="Performance (2)" from_port="performance" to_port="averagable 1"/>
<portSpacing port="source_model" spacing="0"/>
<portSpacing port="source_test set" spacing="0"/>
<portSpacing port="source_through 1" spacing="0"/>
<portSpacing port="sink_averagable 1" spacing="0"/>
<portSpacing port="sink_averagable 2" spacing="0"/>
</process>
</operator>
<connect from_op="Retrieve" from_port="output" to_op="Windowing" to_port="example set input"/>
<connect from_op="Windowing" from_port="example set output" to_op="Validation" to_port="training"/>
<connect from_op="Validation" from_port="averagable 1" to_port="result 1"/>
<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="sink_result 1" spacing="36"/>
<portSpacing port="sink_result 2" spacing="0"/>
</process>
</operator>
</process>
0
Answers
-
Hi,
actually you simply can leave the integer as integer. The J48 will convert them to bins itself. Or do I overlook something?
Greetings,
Sebastian0