A program to recognize and reward our most engaged community members
<?xml version="1.0" encoding="UTF-8" standalone="no"?><process version="5.0"> <context> <input/> <output/> <macros/> </context> <operator activated="true" class="process" compatibility="5.0.0" expanded="true" name="Process"> <process expanded="true" height="656" width="748"> <operator activated="true" class="read_csv" compatibility="5.0.0" expanded="true" height="60" name="Read CSV" width="90" x="45" y="30"> <parameter key="file_name" value="C:\StockMarket\TrainingData_clean_Nominal.csv"/> <parameter key="column_separators" value=","/> <list key="data_set_meta_data_information"/> </operator> <operator activated="true" class="normalize" compatibility="5.0.0" expanded="true" height="94" name="Normalize" width="90" x="45" y="165"> <parameter key="attribute_filter_type" value="single"/> <parameter key="attribute" value="TargetVariable"/> <parameter key="invert_selection" value="true"/> </operator> <operator activated="true" class="read_csv" compatibility="5.0.10" expanded="true" height="60" name="Read CSV (2)" width="90" x="45" y="390"> <parameter key="file_name" value="C:\StockMarket\ResultData_clean.csv"/> <parameter key="use_quotes" value="false"/> <parameter key="column_separators" value=","/> <list key="data_set_meta_data_information"/> </operator> <operator activated="true" class="apply_model" compatibility="5.0.10" expanded="true" height="76" name="Apply Model (3)" width="90" x="246" y="345"> <list key="application_parameters"/> </operator> <operator activated="true" class="x_validation" compatibility="5.0.0" expanded="true" height="112" name="Validation" width="90" x="246" y="165"> <parameter key="sampling_type" value="shuffled sampling"/> <process expanded="true" height="610" width="346"> <operator activated="true" class="set_role" compatibility="5.0.0" expanded="true" height="76" name="Set Role" width="90" x="45" y="75"> <parameter key="name" value="TargetVariable"/> <parameter key="target_role" value="label"/> </operator> <operator activated="true" class="support_vector_machine_libsvm" compatibility="5.0.10" expanded="true" height="76" name="SVM" width="90" x="173" y="196"> <parameter key="kernel_type" value="sigmoid"/> <list key="class_weights"/> <parameter key="calculate_confidences" value="true"/> </operator> <connect from_port="training" to_op="Set Role" to_port="example set input"/> <connect from_op="Set Role" from_port="example set output" to_op="SVM" to_port="training set"/> <connect from_op="SVM" from_port="model" to_port="model"/> <portSpacing port="source_training" spacing="108"/> <portSpacing port="sink_model" spacing="0"/> <portSpacing port="sink_through 1" spacing="0"/> </process> <process expanded="true" height="610" width="302"> <operator activated="true" class="apply_model" compatibility="5.0.0" expanded="true" height="76" name="Apply Model" width="90" x="112" y="30"> <list key="application_parameters"/> </operator> <operator activated="true" class="set_role" compatibility="5.0.0" expanded="true" height="76" name="Set Role (2)" width="90" x="179" y="165"> <parameter key="name" value="TargetVariable"/> <parameter key="target_role" value="label"/> </operator> <operator activated="true" class="performance" compatibility="5.0.0" expanded="true" height="76" name="Performance" width="90" x="112" y="345"/> <operator activated="true" class="write_performance" compatibility="5.0.10" expanded="true" height="60" name="Write Performance" width="90" x="185" y="491"> <parameter key="performance_file" value="C:\StockMarket\SVM_results.csv"/> </operator> <connect from_port="model" to_op="Apply Model" to_port="model"/> <connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/> <connect from_op="Apply Model" from_port="labelled data" to_op="Set Role (2)" to_port="example set input"/> <connect from_op="Set Role (2)" from_port="example set output" to_op="Performance" to_port="labelled data"/> <connect from_op="Performance" from_port="performance" to_op="Write Performance" to_port="input"/> <connect from_op="Write Performance" from_port="through" to_port="averagable 1"/> <portSpacing port="source_model" spacing="0"/> <portSpacing port="source_test set" spacing="0"/> <portSpacing port="source_through 1" spacing="144"/> <portSpacing port="sink_averagable 1" spacing="0"/> <portSpacing port="sink_averagable 2" spacing="0"/> </process> </operator> <operator activated="true" class="apply_model" compatibility="5.0.10" expanded="true" height="76" name="Apply Model (2)" width="90" x="380" y="345"> <list key="application_parameters"/> </operator> <operator activated="true" class="select_attributes" compatibility="5.0.10" expanded="true" height="76" name="Select Attributes" width="90" x="514" y="345"> <parameter key="attribute_filter_type" value="regular_expression"/> <parameter key="regular_expression" value="pred.*"/> </operator> <operator activated="true" class="write_csv" compatibility="5.0.10" expanded="true" height="60" name="Write CSV" width="90" x="648" y="345"> <parameter key="csv_file" value="C:\StockMarket\SVM_labelled_data.csv"/> <parameter key="column_separator" value=","/> </operator> <connect from_op="Read CSV" from_port="output" to_op="Normalize" to_port="example set input"/> <connect from_op="Normalize" from_port="example set output" to_op="Validation" to_port="training"/> <connect from_op="Normalize" from_port="preprocessing model" to_op="Apply Model (3)" to_port="model"/> <connect from_op="Read CSV (2)" from_port="output" to_op="Apply Model (3)" to_port="unlabelled data"/> <connect from_op="Apply Model (3)" from_port="labelled data" to_op="Apply Model (2)" to_port="unlabelled data"/> <connect from_op="Validation" from_port="model" to_op="Apply Model (2)" to_port="model"/> <connect from_op="Validation" from_port="training" to_port="result 1"/> <connect from_op="Validation" from_port="averagable 1" to_port="result 2"/> <connect from_op="Apply Model (2)" from_port="labelled data" to_op="Select Attributes" to_port="example set input"/> <connect from_op="Apply Model (2)" from_port="model" to_port="result 3"/> <connect from_op="Select Attributes" from_port="example set output" to_op="Write CSV" to_port="input"/> <connect from_op="Write CSV" from_port="through" to_port="result 4"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="sink_result 1" spacing="0"/> <portSpacing port="sink_result 2" spacing="0"/> <portSpacing port="sink_result 3" spacing="0"/> <portSpacing port="sink_result 4" spacing="0"/> <portSpacing port="sink_result 5" spacing="0"/> </process> </operator></process>