A program to recognize and reward our most engaged community members
<?xml version="1.0" encoding="UTF-8" standalone="no"?><process version="5.0"> <context> <input/> <output/> <macros/> </context> <operator activated="true" class="process" compatibility="5.0.8" expanded="true" name="Process"> <parameter key="logverbosity" value="3"/> <parameter key="random_seed" value="2001"/> <parameter key="send_mail" value="1"/> <parameter key="process_duration_for_mail" value="30"/> <parameter key="encoding" value="SYSTEM"/> <parameter key="parallelize_main_process" value="false"/> <process expanded="true" height="417" width="614"> <operator activated="true" class="stream_database" compatibility="5.0.8" expanded="true" height="60" name="Stream Database" width="90" x="45" y="120"> <parameter key="define_connection" value="0"/> <parameter key="connection" value="blabla"/> <parameter key="database_system" value="0"/> <parameter key="table_name" value="telecomchurn"/> <parameter key="recreate_index" value="false"/> </operator> <operator activated="true" class="read_model" compatibility="5.0.8" expanded="true" height="60" name="Read Model" width="90" x="45" y="30"> <parameter key="model_file" value="c:\churn_scoring.mod"/> </operator> <operator activated="true" class="apply_model" compatibility="5.0.8" expanded="true" height="76" name="Apply Model" width="90" x="179" y="30"> <list key="application_parameters"/> <parameter key="create_view" value="false"/> </operator> <connect from_op="Stream Database" from_port="output" to_op="Apply Model" to_port="unlabelled data"/> <connect from_op="Read Model" from_port="output" to_op="Apply Model" to_port="model"/> <connect from_op="Apply Model" from_port="labelled data" to_port="result 1"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="sink_result 1" spacing="0"/> <portSpacing port="sink_result 2" spacing="0"/> </process> </operator></process>
<?xml version="1.0" encoding="UTF-8" standalone="no"?><process version="5.0"> <context> <input/> <output/> <macros/> </context> <operator activated="true" class="process" compatibility="5.0.8" expanded="true" name="Process"> <process expanded="true" height="417" width="614"> <operator activated="true" class="read_model" compatibility="5.0.8" expanded="true" height="60" name="Read Model" width="90" x="45" y="30"> <parameter key="model_file" value="c:\churn_scoring.mod"/> </operator> <operator activated="true" class="remember" compatibility="5.0.8" expanded="true" height="60" name="Remember" width="90" x="179" y="30"> <parameter key="name" value="model"/> <parameter key="io_object" value="Model"/> </operator> <operator activated="true" class="stream_database" compatibility="5.0.8" expanded="true" height="60" name="Stream Database" width="90" x="45" y="120"> <parameter key="connection" value="blabla"/> <parameter key="table_name" value="telecomchurn"/> </operator> <operator activated="true" class="loop_batches" compatibility="5.0.8" expanded="true" height="60" name="Loop Batches" width="90" x="246" y="120"> <process expanded="true" height="423" width="854"> <operator activated="true" class="recall" compatibility="5.0.8" expanded="true" height="60" name="Recall" width="90" x="45" y="165"> <parameter key="name" value="model"/> <parameter key="io_object" value="Model"/> </operator> <operator activated="true" class="materialize_data" compatibility="5.0.8" expanded="true" height="76" name="Materialize Data" width="90" x="45" y="30"/> <operator activated="true" class="apply_model" compatibility="5.0.8" expanded="true" height="76" name="Apply Model" width="90" x="179" y="30"> <list key="application_parameters"/> </operator> <operator activated="true" class="write_database" compatibility="5.0.8" expanded="true" height="60" name="Write Database" width="90" x="313" y="30"> <parameter key="connection" value="Bla"/> <parameter key="table_name" value="new_table_name"/> <parameter key="overwrite_mode" value="overwrite first, append then"/> </operator> <connect from_port="exampleSet" to_op="Materialize Data" to_port="example set input"/> <connect from_op="Recall" from_port="result" to_op="Apply Model" to_port="model"/> <connect from_op="Materialize Data" from_port="example set output" to_op="Apply Model" to_port="unlabelled data"/> <connect from_op="Apply Model" from_port="labelled data" to_op="Write Database" to_port="input"/> <portSpacing port="source_exampleSet" spacing="0"/> </process> </operator> <connect from_op="Read Model" from_port="output" to_op="Remember" to_port="store"/> <connect from_op="Stream Database" from_port="output" to_op="Loop Batches" to_port="example set"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="sink_result 1" spacing="0"/> </process> </operator></process>
Although I find it obvious how to implement this in a consecrated Data Mining suite as SPSS Clementine/ Modeler or SAS Enterprise Miner, I cannot see another approach of scoring and storing the whole (large) dataset with RM.
consecrate verb (consecrated, consecrating) 1 to set something apart for a holy use; to make sacred; to dedicate something to God. 2 Christianity to sanctify (bread and wine) for the Eucharist. 3 to devote something to a special use. consecration noun.ETYMOLOGY: 15c: from Latin consecrare, consecratum to make sacred, from sacer sacred.
m_r_nour wrote:hi haddock , Here is a forum to ask questions and doubtsso if you do not want help me please don't disturb me >:(
haddock wrote:Cheer up, and stop being so defensive. I was making a joke
haddock wrote:PS It also occurs to me that your training set must be smaller than your test set, unusual.
Sebastian Land wrote:Ok,that's enough guys, please calm down. This is a forum for helping each other not for battling!Here's no competition for the one with the most exquisite language skills or best data miner on earth.
Sebastian Land wrote:And, let me add this as another non-native speaker, Haddock has to live with the fact, that we mess up his mother language. At least with my german mother tongue, most of my English sentencens will either sound rude or simply confusing. Probably this is a reason to get sarcastic sometimes. Last but not least, Haddock is the most active community member and has helped many of our users with valuable tips. It's definitively a good idea to listen to what he has to say.