<?xml version="1.0" encoding="UTF-8" standalone="no"?><process version="5.0"> <context> <input/> <output/> <macros/> </context> <operator activated="true" class="process" expanded="true" name="Root"> <parameter key="logverbosity" value="warning"/> <process expanded="true" height="217" width="745"> <operator activated="true" class="retrieve" expanded="true" height="60" name="Retrieve" width="90" x="45" y="30"> <parameter key="repository_entry" value="//Samples/data/Iris"/> </operator> <operator activated="true" class="subprocess" expanded="true" height="76" name="Preprocessing" width="90" x="180" y="30"> <process expanded="true"> <operator activated="true" class="discretize_by_frequency" expanded="true" name="FrequencyDiscretization"> <parameter key="number_of_bins" value="5"/> </operator> <operator activated="true" class="nominal_to_binominal" expanded="true" name="Nominal2Binominal"> <parameter key="transform_binominal" value="true"/> </operator> <connect from_port="in 1" to_op="FrequencyDiscretization" to_port="example set input"/> <connect from_op="FrequencyDiscretization" from_port="example set output" to_op="Nominal2Binominal" to_port="example set input"/> <connect from_op="Nominal2Binominal" from_port="example set output" to_port="out 1"/> <portSpacing port="source_in 1" spacing="0"/> <portSpacing port="source_in 2" spacing="0"/> <portSpacing port="sink_out 1" spacing="0"/> <portSpacing port="sink_out 2" spacing="0"/> </process> </operator> <operator activated="true" class="fp_growth" expanded="true" height="76" name="FPGrowth" width="90" x="313" y="30"> <parameter key="find_min_number_of_itemsets" value="false"/> <parameter key="min_support" value="0.1"/> </operator> <operator activated="true" class="create_association_rules" expanded="true" height="60" name="AssociationRuleGenerator" width="90" x="313" y="165"> <parameter key="min_confidence" value="0.7"/> </operator> <operator activated="true" class="execute_script" expanded="true" height="76" name="Execute Script" width="90" x="581" y="75"> <parameter key="script" value="import com.rapidminer.tools.Ontology; import com.rapidminer.operator.learner.associations.*; String target="a1 = range5" AssociationRules rules = input[0]; // construct attribute set Attribute[] attributes= new Attribute[11]; attributes[0] = AttributeFactory.createAttribute("Premise", Ontology.STRING); attributes[1] = AttributeFactory.createAttribute("Premise Items", Ontology.INTEGER); attributes[2] = AttributeFactory.createAttribute("Conclusion", Ontology.STRING); attributes[3] = AttributeFactory.createAttribute("Conclusion Items", Ontology.INTEGER); attributes[4] = AttributeFactory.createAttribute("Confidence", Ontology.REAL); attributes[5] = AttributeFactory.createAttribute("Conviction", Ontology.REAL); attributes[6] = AttributeFactory.createAttribute("Gain", Ontology.REAL); attributes[7] = AttributeFactory.createAttribute("Laplace", Ontology.REAL); attributes[8] = AttributeFactory.createAttribute("Lift", Ontology.REAL); attributes[9] = AttributeFactory.createAttribute("Ps", Ontology.REAL); attributes[10] = AttributeFactory.createAttribute("Total Support", Ontology.REAL); MemoryExampleTable table = new MemoryExampleTable(attributes); DataRowFactory ROW_FACTORY = new DataRowFactory(0); String[] strings= new String[11]; for (AssociationRule rule : rules) { 		// construct example data if(rule.toConclusionString().contains(target)) { strings[0]=rule.toPremiseString(); strings[1]=rule.premise.size().toString(); strings[2]=rule.toConclusionString(); strings[3]=rule.conclusion.size().toString(); strings[4]=rule.getConfidence().toString(); strings[5]=rule.getConviction().toString(); strings[6]=rule.getGain().toString(); strings[7]=rule.getLaplace().toString(); strings[8]=rule.getLift().toString(); strings[9]=rule.getPs().toString(); strings[10]=rule.getTotalSupport().toString(); // make and add row DataRow row = ROW_FACTORY.create(strings, attributes); table.addDataRow(row);	 		} } ExampleSet exampleSet = table.createExampleSet(); return exampleSet; "/> </operator> <connect from_op="Retrieve" from_port="output" to_op="Preprocessing" to_port="in 1"/> <connect from_op="Preprocessing" from_port="out 1" to_op="FPGrowth" to_port="example set"/> <connect from_op="FPGrowth" from_port="frequent sets" to_op="AssociationRuleGenerator" to_port="item sets"/> <connect from_op="AssociationRuleGenerator" from_port="rules" to_op="Execute Script" to_port="input 1"/> <connect from_op="Execute Script" from_port="output 1" to_port="result 1"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="sink_result 1" spacing="0"/> <portSpacing port="sink_result 2" spacing="0"/> </process> </operator></process>
choose_username wrote:Occupation = manager /\ Marital-Status= married /\ Relationship=husband => >=50k
<?xml version="1.0" encoding="UTF-8" standalone="no"?><process version="5.0"> <context> <input/> <output/> <macros/> </context> <operator activated="true" class="process" expanded="true" name="Process"> <process expanded="true" height="512" width="705"> <operator activated="false" class="read_c4.5" expanded="true" height="60" name="Read C4.5" width="90" x="45" y="30"> <parameter key="c45_filestem" value="/home/wessel/Desktop/census/census-income.data"/> </operator> <operator activated="false" class="store" expanded="true" height="60" name="Store" width="90" x="180" y="30"> <parameter key="repository_entry" value="CensusData"/> </operator> <operator activated="true" class="retrieve" expanded="true" height="60" name="Retrieve" width="90" x="315" y="30"> <parameter key="repository_entry" value="CensusData"/> </operator> <operator activated="true" class="nominal_to_binominal" expanded="true" height="94" name="Nominal to Binominal" width="90" x="450" y="30"> <parameter key="attribute_filter_type" value="single"/> <parameter key="attribute" value="label"/> <parameter key="include_special_attributes" value="true"/> </operator> <operator activated="true" class="filter_examples" expanded="true" height="76" name="Filter Examples" width="90" x="585" y="30"> <parameter key="condition_class" value="no_missing_labels"/> </operator> <operator activated="true" class="filter_example_range" expanded="true" height="76" name="Filter Example Range" width="90" x="45" y="120"> <parameter key="first_example" value="1"/> <parameter key="last_example" value="20000"/> </operator> <operator activated="true" class="weka:W-JRip" expanded="true" height="76" name="W-JRip" width="90" x="180" y="120"/> <connect from_op="Read C4.5" from_port="output" to_op="Store" to_port="input"/> <connect from_op="Retrieve" from_port="output" to_op="Nominal to Binominal" to_port="example set input"/> <connect from_op="Nominal to Binominal" from_port="example set output" to_op="Filter Examples" to_port="example set input"/> <connect from_op="Filter Examples" from_port="example set output" to_op="Filter Example Range" to_port="example set input"/> <connect from_op="Filter Example Range" from_port="example set output" to_op="W-JRip" to_port="training set"/> <connect from_op="W-JRip" from_port="model" to_port="result 1"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="sink_result 1" spacing="126"/> <portSpacing port="sink_result 2" spacing="0"/> </process> </operator></process>
ratheesan wrote:Hi,I think the relation can be identified using decision tree where we select label attribute is 'Earning' in the first post.If there is any relation it will reflect in the tree as Haddock said.ByRatheesan