A program to recognize and reward our most engaged community members
<?xml version="1.0" encoding="UTF-8" standalone="no"?><process version="5.0"> <context> <input> <location/> </input> <output> <location/> <location/> <location/> </output> <macros/> </context> <operator activated="true" class="process" expanded="true" name="Process"> <process expanded="true" height="415" width="882"> <operator activated="true" class="generate_data" expanded="true" height="60" name="Generate Data" width="90" x="45" y="30"> <parameter key="target_function" value="gaussian mixture clusters"/> <parameter key="number_examples" value="1000"/> <parameter key="number_of_attributes" value="2"/> <parameter key="use_local_random_seed" value="true"/> </operator> <operator activated="true" class="select_attributes" expanded="true" height="76" name="Select Attributes" width="90" x="179" y="30"> <parameter key="attribute_filter_type" value="single"/> <parameter key="attribute" value="label"/> <parameter key="invert_selection" value="true"/> <parameter key="include_special_attributes" value="true"/> </operator> <operator activated="true" class="generate_attributes" expanded="true" height="76" name="Generate Attributes" width="90" x="313" y="30"> <list key="function_descriptions"> <parameter key="label" value=""true""/> </list> </operator> <operator activated="true" class="set_role" expanded="true" height="76" name="Set Role" width="90" x="447" y="30"> <parameter key="name" value="label"/> <parameter key="target_role" value="label"/> </operator> <operator activated="true" class="support_vector_machine_libsvm" expanded="true" height="76" name="SVM" width="90" x="581" y="30"> <parameter key="svm_type" value="one-class"/> <parameter key="gamma" value="1.0"/> <list key="class_weights"/> </operator> <operator activated="true" class="apply_model" expanded="true" height="76" name="Apply Model" width="90" x="715" y="30"> <list key="application_parameters"/> </operator> <connect from_op="Generate Data" from_port="output" to_op="Select Attributes" to_port="example set input"/> <connect from_op="Select Attributes" from_port="example set output" to_op="Generate Attributes" to_port="example set input"/> <connect from_op="Generate Attributes" from_port="example set output" to_op="Set Role" to_port="example set input"/> <connect from_op="Set Role" from_port="example set output" to_op="SVM" to_port="training set"/> <connect from_op="SVM" from_port="model" to_op="Apply Model" to_port="model"/> <connect from_op="SVM" from_port="exampleSet" to_op="Apply Model" to_port="unlabelled data"/> <connect from_op="Apply Model" from_port="labelled data" to_port="result 2"/> <connect from_op="Apply Model" from_port="model" to_port="result 1"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="sink_result 1" spacing="0"/> <portSpacing port="sink_result 2" spacing="0"/> <portSpacing port="sink_result 3" spacing="0"/> </process> </operator></process>
<?xml version="1.0" encoding="UTF-8" standalone="no"?><process version="5.0"> <context> <input> <location/> </input> <output> <location/> <location/> <location/> </output> <macros/> </context> <operator activated="true" class="process" expanded="true" name="Process"> <process expanded="true" height="415" width="882"> <operator activated="true" class="generate_data" expanded="true" height="60" name="Generate Data" width="90" x="45" y="30"> <parameter key="target_function" value="gaussian mixture clusters"/> <parameter key="number_examples" value="1000"/> <parameter key="number_of_attributes" value="2"/> <parameter key="use_local_random_seed" value="true"/> </operator> <operator activated="true" class="select_attributes" expanded="true" height="76" name="Select Attributes" width="90" x="179" y="30"> <parameter key="attribute_filter_type" value="single"/> <parameter key="attribute" value="label"/> <parameter key="invert_selection" value="true"/> <parameter key="include_special_attributes" value="true"/> </operator> <operator activated="true" class="generate_attributes" expanded="true" height="76" name="Generate Attributes" width="90" x="313" y="30"> <list key="function_descriptions"> <parameter key="label" value=""true""/> </list> </operator> <operator activated="true" breakpoints="after" class="set_role" expanded="true" height="76" name="Set Role" width="90" x="447" y="30"> <parameter key="name" value="label"/> <parameter key="target_role" value="label"/> </operator> <operator activated="true" class="support_vector_machine_libsvm" expanded="true" height="76" name="SVM" width="90" x="581" y="30"> <parameter key="svm_type" value="one-class"/> <parameter key="gamma" value="1.0"/> <list key="class_weights"/> </operator> <operator activated="true" class="generate_data" expanded="true" height="60" name="Generate Data (2)" width="90" x="45" y="120"> <parameter key="target_function" value="gaussian mixture clusters"/> <parameter key="number_of_attributes" value="2"/> <parameter key="attributes_upper_bound" value="30.0"/> <parameter key="use_local_random_seed" value="true"/> <parameter key="local_random_seed" value="2010"/> </operator> <operator activated="true" class="select_attributes" expanded="true" height="76" name="Select Attributes (2)" width="90" x="179" y="120"> <parameter key="attribute_filter_type" value="single"/> <parameter key="attribute" value="label"/> <parameter key="invert_selection" value="true"/> <parameter key="include_special_attributes" value="true"/> </operator> <operator activated="true" class="generate_attributes" expanded="true" height="76" name="Generate Attributes (2)" width="90" x="313" y="120"> <list key="function_descriptions"> <parameter key="label" value=""false""/> </list> </operator> <operator activated="true" breakpoints="after" class="set_role" expanded="true" height="76" name="Set Role (2)" width="90" x="447" y="120"> <parameter key="name" value="label"/> <parameter key="target_role" value="label"/> </operator> <operator activated="true" class="apply_model" expanded="true" height="76" name="Apply Model" width="90" x="715" y="75"> <list key="application_parameters"/> </operator> <connect from_op="Generate Data" from_port="output" to_op="Select Attributes" to_port="example set input"/> <connect from_op="Select Attributes" from_port="example set output" to_op="Generate Attributes" to_port="example set input"/> <connect from_op="Generate Attributes" from_port="example set output" to_op="Set Role" to_port="example set input"/> <connect from_op="Set Role" from_port="example set output" to_op="SVM" to_port="training set"/> <connect from_op="SVM" from_port="model" to_op="Apply Model" to_port="model"/> <connect from_op="Generate Data (2)" from_port="output" to_op="Select Attributes (2)" to_port="example set input"/> <connect from_op="Select Attributes (2)" from_port="example set output" to_op="Generate Attributes (2)" to_port="example set input"/> <connect from_op="Generate Attributes (2)" from_port="example set output" to_op="Set Role (2)" to_port="example set input"/> <connect from_op="Set Role (2)" from_port="example set output" to_op="Apply Model" to_port="unlabelled data"/> <connect from_op="Apply Model" from_port="labelled data" to_port="result 1"/> <connect from_op="Apply Model" from_port="model" to_port="result 2"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="sink_result 1" spacing="0"/> <portSpacing port="sink_result 2" spacing="0"/> <portSpacing port="sink_result 3" spacing="0"/> </process> </operator></process>
Legend wrote:However, it always results "true" predictions even if test data is generated between 100 and 200 bounds.How can I classify out liers?(It's possible with the consideration of confidence(true) attrigbute?)
...Feb 24, 2010 11:58:33 AM WARNING: SimpleCriterion: NaN was generated!...