I'm using the parameter optimization for SVM.
If I'm correct the optimization steps are as follows.
1. Search parameters
2. Apply optimal parameters on the model
3. Apply optimal model to new data
Does it make sense to use Xvalidation to apply the optimal parameters???
I mean after the operator "ParameterSetter"? (see attached code)
Why does the "Final Performance" doesn't appear at the end? Only the Binomial Calssification Performance(2) appears.
Another question:
Is it possible to optimize the parameters with AUC. (Area Under Curve)
I read some papers that people have done such an analysis. Is this possible with Rapidminer?
My Idea is to compare different models (SVM, Neuronal Networks, Logistic Regression) on same data.
<operator name="Root" class="Process" expanded="yes">
<description text="#ylt#p#ygt# Often the different operators have many parameters and it is not clear which parameter values are best for the learning task at hand. The parameter optimization operator helps to find an optimal parameter set for the used operators. #ylt#/p#ygt# #ylt#p#ygt# The inner crossvalidation estimates the performance for each parameter set. In this process two parameters of the SVM are tuned. The result can be plotted in 3D (using gnuplot) or in color mode. #ylt#/p#ygt# #ylt#p#ygt# Try the following: #ylt#ul#ygt# #ylt#li#ygt#Start the process. The result is the best parameter set and the performance which was achieved with this parameter set.#ylt#/li#ygt# #ylt#li#ygt#Edit the parameter list of the ParameterOptimization operator to find another parameter set.#ylt#/li#ygt# #ylt#/ul#ygt# #ylt#/p#ygt# "/>
<operator name="CSVExampleSource" class="CSVExampleSource">
<parameter key="filename" value="C:\Users\jo\Documents\rm_workspace\BF_Analyse_daten_221209\Trainset221209_500mPosNeg.aml"/>
</operator>
<operator name="Ztransformation" class="Normalization">
<parameter key="return_preprocessing_model" value="true"/>
</operator>
<operator name="IOStorer" class="IOStorer">
<parameter key="name" value="data"/>
<parameter key="io_object" value="ExampleSet"/>
<parameter key="remove_from_process" value="false"/>
</operator>
<operator name="ParameterOptimization" class="GridParameterOptimization" expanded="yes">
<list key="parameters">
<parameter key="Training.C" value="0.03125,0.044194173824159220275052772631553,0.0625,0.088388347648318440550105545263106,0.125,0.17677669529663688110021109052621,0.25,0.35355339059327376220042218105242,0.5,0.70710678118654752440084436210485,1,1.4142135623730950488016887242097,2,103.18914671611545020044386249798,4,5.6568542494923801952067548968388,8,11.313708498984760390413509793678,16,22.627416997969520780827019587355,32,45.25483399593904156165403917471,64,90.509667991878083123308078349421,128,181.01933598375616624661615669884,256,362.03867196751233249323231339768,512,724.07734393502466498646462679537,1024,1448.1546878700493299729292535907,2048,2896.3093757400986599458585071815,4096,5792.6187514801973198917170143629,8192,11585.237502960394639783434028726,16384,379625062.49700621155642356625329,32768"/>
<parameter key="Training.gamma" value="0.00000095367431640625,0.0000019073486328125,0.000003814697265625,0.00000762939453125,0.0000152587890625,0.000030517578125,0.00006103515625,0.0001220703125,0.000244140625,0.00048828125,0.0009765625,0.001953125,0.00390625,0.0078125,0.015625,0.03125,0.0625,0.125,0.25,0.5,1,2,4,8,16,32,64,128,256,512,1024,2048,4096,8192,16384"/>
</list>
<operator name="Validation" class="XValidation" expanded="yes">
<parameter key="keep_example_set" value="true"/>
<parameter key="sampling_type" value="shuffled sampling"/>
<operator name="Training" class="LibSVMLearner">
<parameter key="degree" value="5"/>
<parameter key="gamma" value="16384"/>
<parameter key="C" value="32768"/>
<parameter key="epsilon" value="0.01"/>
<list key="class_weights">
</list>
</operator>
<operator name="ApplierChain" class="OperatorChain" expanded="yes">
<operator name="Test" class="ModelApplier">
<parameter key="keep_model" value="true"/>
<list key="application_parameters">
</list>
</operator>
<operator name="BinominalClassificationPerformance" class="BinominalClassificationPerformance">
<parameter key="precision" value="true"/>
<parameter key="skip_undefined_labels" value="false"/>
</operator>
</operator>
</operator>
<operator name="Log" class="ProcessLog">
<parameter key="filename" value="paraopt.log"/>
<list key="log">
<parameter key="C" value="operator.Training.parameter.C"/>
<parameter key="degree" value="operator.Training.parameter.degree"/>
<parameter key="absolute" value="operator.BinominalClassificationPerformance.value.sensitivity"/>
</list>
</operator>
</operator>
<operator name="Apply optimal parameters" class="OperatorChain" expanded="yes">
<operator name="IORetriever" class="IORetriever">
<parameter key="name" value="data"/>
<parameter key="io_object" value="ExampleSet"/>
</operator>
<operator name="ParameterSetter" class="ParameterSetter">
<list key="name_map">
<parameter key="Training" value="Apply"/>
</list>
</operator>
<operator name="XValidation" class="XValidation" expanded="yes">
<parameter key="create_complete_model" value="true"/>
<operator name="Apply" class="LibSVMLearner">
<parameter key="degree" value="1"/>
<parameter key="gamma" value="0.000244140625"/>
<parameter key="C" value="379625062.49700621155642356625329"/>
<list key="class_weights">
</list>
</operator>
<operator name="OperatorChain (2)" class="OperatorChain" expanded="yes">
<operator name="ApplyModel" class="ModelApplier">
<parameter key="keep_model" value="true"/>
<list key="application_parameters">
</list>
</operator>
<operator name="BinominalClassificationPerformance (2)" class="BinominalClassificationPerformance">
<parameter key="precision" value="true"/>
<parameter key="skip_undefined_labels" value="false"/>
</operator>
</operator>
</operator>
</operator>
<operator name="Test new Data" class="OperatorChain" expanded="yes">
<operator name="Test Data" class="ExampleSetGenerator">
<parameter key="target_function" value="random classification"/>
<parameter key="number_examples" value="10"/>
</operator>
<operator name="IOSelector" class="IOSelector">
<parameter key="io_object" value="Model"/>
</operator>
<operator name="ModelApplier" class="ModelApplier">
<list key="application_parameters">
</list>
</operator>
<operator name="TestModel" class="ModelApplier">
<list key="application_parameters">
</list>
<parameter key="create_view" value="true"/>
</operator>
<operator name="Final Performance" class="BinominalClassificationPerformance">
<parameter key="main_criterion" value="AUC"/>
<parameter key="AUC" value="true"/>
<parameter key="precision" value="true"/>
<parameter key="recall" value="true"/>
<parameter key="lift" value="true"/>
<parameter key="skip_undefined_labels" value="false"/>
</operator>
</operator>
</operator>