Altair RISE
A program to recognize and reward our most engaged community members
Nominate Yourself Now!
Home
Discussions
Community Q&A
"saved XML output bug"
labrat
Hi all,
the XML that is exported out of Rapidminer when you save results is currently invalid because the closing object-stream tag is omitted from the bottom of the file.
Cheers
Stuart
Find more posts tagged with
AI Studio
XML
Bug Report
Accepted answers
All comments
fischer
This is strange. The XML output is handled by a library, so this is hard to track down. Can you post an example?
Cheers,
Simon
labrat
Using RM 4.5 and using the SVM/Xval example in the tutorial if you do the analysis:
<operator name="Root" class="Process" expanded="yes">
<operator name="Input" class="ExampleSource">
<parameter key="attributes" value="../data/polynomial.aml"/>
</operator>
<operator name="XVal" class="XValidation" expanded="yes">
<parameter key="sampling_type" value="shuffled sampling"/>
<operator name="Training" class="LibSVMLearner">
<parameter key="svm_type" value="epsilon-SVR"/>
<parameter key="kernel_type" value="poly"/>
<parameter key="C" value="1000.0"/>
<list key="class_weights">
</list>
</operator>
<operator name="ApplierChain" class="OperatorChain" expanded="yes">
<operator name="Test" class="ModelApplier">
<list key="application_parameters">
</list>
</operator>
<operator name="Evaluation" class="RegressionPerformance">
<parameter key="root_mean_squared_error" value="true"/>
<parameter key="absolute_error" value="true"/>
<parameter key="relative_error" value="true"/>
<parameter key="normalized_absolute_error" value="true"/>
<parameter key="root_relative_squared_error" value="true"/>
<parameter key="squared_error" value="true"/>
<parameter key="correlation" value="true"/>
</operator>
</operator>
</operator>
</operator>
if you save the performance file *.per you get this;
<object-stream>
<PerformanceVector id="1">
<currentValues id="2">
<entry>
<string>root_mean_squared_error</string>
<double>7.271397088254498</double>
</entry>
<entry>
<string>relative_error</string>
<double>0.4261726449515895</double>
</entry>
<entry>
<string>correlation</string>
<double>0.9990774750706919</double>
</entry>
<entry>
<string>normalized_absolute_error</string>
<double>0.04030556352101554</double>
</entry>
<entry>
<string>absolute_error</string>
<double>5.107471175794692</double>
</entry>
<entry>
<string>squared_error</string>
<double>54.826375982674925</double>
</entry>
<entry>
<string>root_relative_squared_error</string>
<double>0.04407058437419177</double>
</entry>
</currentValues>
<comparator class="com.rapidminer.operator.performance.PerformanceVector$DefaultComparator" id="3"/>
<mainCriterion>first</mainCriterion>
<averagesList id="4">
<root__mean__squared__error id="5">
<sum>10965.275196534985</sum>
<squaresSum>3960036.9527361454</squaresSum>
<exampleCount>200.0</exampleCount>
<predictedAttribute class="NumericalAttribute" id="6">
<attributeDescription id="7">
<name>prediction(label)</name>
<valueType>4</valueType>
<blockType>1</blockType>
<defaultValue>0.0</defaultValue>
<index>6</index>
</attributeDescription>
<transformations id="8"/>
<statistics class="linked-list" id="9">
<NumericalStatistics id="10">
<sum>0.0</sum>
<squaredSum>0.0</squaredSum>
<valueCounter>0</valueCounter>
</NumericalStatistics>
<WeightedNumericalStatistics id="11">
<sum>0.0</sum>
<squaredSum>0.0</squaredSum>
<totalWeight>0.0</totalWeight>
<count>0.0</count>
</WeightedNumericalStatistics>
<com.rapidminer.example.MinMaxStatistics id="12">
<minimum>Infinity</minimum>
<maximum>-Infinity</maximum>
</com.rapidminer.example.MinMaxStatistics>
<UnknownStatistics id="13">
<unknownCounter>0</unknownCounter>
</UnknownStatistics>
</statistics>
<constructionDescription>prediction(label)</constructionDescription>
</predictedAttribute>
<labelAttribute class="NumericalAttribute" id="14">
<attributeDescription id="15">
<name>label</name>
<valueType>4</valueType>
<blockType>1</blockType>
<defaultValue>0.0</defaultValue>
<index>5</index>
</attributeDescription>
<transformations id="16"/>
<statistics class="linked-list" id="17">
<NumericalStatistics id="18">
<sum>0.0</sum>
<squaredSum>0.0</squaredSum>
<valueCounter>0</valueCounter>
</NumericalStatistics>
<WeightedNumericalStatistics id="19">
<sum>0.0</sum>
<squaredSum>0.0</squaredSum>
<totalWeight>0.0</totalWeight>
<count>0.0</count>
</WeightedNumericalStatistics>
<com.rapidminer.example.MinMaxStatistics id="20">
<minimum>Infinity</minimum>
<maximum>-Infinity</maximum>
</com.rapidminer.example.MinMaxStatistics>
<UnknownStatistics id="21">
<unknownCounter>0</unknownCounter>
</UnknownStatistics>
</statistics>
<constructionDescription>label</constructionDescription>
</labelAttribute>
<meanSum>72.71397088254498</meanSum>
<meanSquaredSum>548.2637598267493</meanSquaredSum>
<averageCount>10</averageCount>
</root__mean__squared__error>
<absolute__error id="22">
<sum>1021.4942351589382</sum>
<squaresSum>10965.275196534985</squaresSum>
<exampleCount>200.0</exampleCount>
<predictedAttribute class="NumericalAttribute" reference="6"/>
<labelAttribute class="NumericalAttribute" reference="14"/>
<meanSum>51.07471175794692</meanSum>
<meanSquaredSum>269.8618246507336</meanSquaredSum>
<averageCount>10</averageCount>
</absolute__error>
<relative__error id="23">
<sum>85.2345289903179</sum>
<squaresSum>1012.762540663155</squaresSum>
<exampleCount>200.0</exampleCount>
<predictedAttribute class="NumericalAttribute" reference="6"/>
<labelAttribute class="NumericalAttribute" reference="14"/>
<meanSum>4.261726449515895</meanSum>
<meanSquaredSum>3.142985588188072</meanSquaredSum>
<averageCount>10</averageCount>
</relative__error>
<normalized__absolute__error id="24">
<predictedAttribute class="NumericalAttribute" reference="6"/>
<labelAttribute class="NumericalAttribute" reference="14"/>
<deviationSum>1021.4942351589382</deviationSum>
<relativeSum>27075.057565148352</relativeSum>
<trueLabelSum>4078.1396808612185</trueLabelSum>
<exampleCounter>20.0</exampleCounter>
<meanSum>0.40305563521015536</meanSum>
<meanSquaredSum>0.018255354969483512</meanSquaredSum>
<averageCount>10</averageCount>
</normalized__absolute__error>
<root__relative__squared__error id="25">
<predictedAttribute class="NumericalAttribute" reference="6"/>
<labelAttribute class="NumericalAttribute" reference="14"/>
<deviationSum>10965.275196534985</deviationSum>
<relativeSum>6475981.792977156</relativeSum>
<trueLabelSum>4078.1396808612185</trueLabelSum>
<exampleCounter>20.0</exampleCounter>
<meanSum>0.4407058437419177</meanSum>
<meanSquaredSum>0.021258629086615133</meanSquaredSum>
<averageCount>10</averageCount>
</root__relative__squared__error>
<squared__error id="26">
<sum>10965.275196534985</sum>
<squaresSum>3960036.9527361454</squaresSum>
<exampleCount>200.0</exampleCount>
<predictedAttribute class="NumericalAttribute" reference="6"/>
<labelAttribute class="NumericalAttribute" reference="14"/>
<meanSum>548.2637598267493</meanSum>
<meanSquaredSum>34173.58564301037</meanSquaredSum>
<averageCount>10</averageCount>
</squared__error>
<correlation id="27">
<labelAttribute class="NumericalAttribute" reference="14"/>
<predictedLabelAttribute class="NumericalAttribute" reference="6"/>
<exampleCount>200.0</exampleCount>
<sumLabel>36083.680010339376</sumLabel>
<sumPredict>36280.64884722099</sumPredict>
<sumLabelPredict>1.3344662294616919E7</sumLabelPredict>
<sumLabelSqr>1.3277723556890765E7</sumLabelSqr>
<sumPredictSqr>1.34225663075396E7</sumPredictSqr>
<meanSum>9.990774750706919</meanSum>
<meanSquaredSum>9.981562312225481</meanSquaredSum>
<averageCount>10</averageCount>
</correlation>
</averagesList>
<source>Evaluation</source>
</PerformanceVector>
as you see you are missing the "</object-stream>" tag. This is also the same for the *.RES files too
Stuart
fischer
Confirmed. However, that does not prevent RM from reading the file back in, does it? At least not for me.
This is in fact a problem with xstream. It was simple to fix from our side, although I think this is a flaw in the implementation of xstream. It requires us to close the stream after every object which now prevents us to send several XML streams in a row.
Cheers,
Simon
labrat
Correct RM can read is able to read it back, however some programs (like EXCEL) can be very fussy about having correctly constructed XML.
Well i glad i could help
Quick Links
All Categories
Recent Discussions
Activity
Unanswered
日本語 (Japanese)
한국어(Korean)
Groups