A program to recognize and reward our most engaged community members
<operator name="XLU Prediction with a SVM" class="Process" expanded="yes"> <parameter key="resultfile" value="C:\Documents and Settings\ahanazi\Desktop\Testinf Rapid\myFirstModel\Model2\result.res"/> <operator name="Load Data from Spreadsheet" class="ExcelExampleSource"> <parameter key="excel_file" value="C:\Documents and Settings\ahanazi\Desktop\Testinf Rapid\myFirstModel\Model2\data\index-weekly-from-1-1-2003-T0-28-2-2009.xls"/> <parameter key="first_row_as_names" value="true"/> <parameter key="create_label" value="true"/> <parameter key="label_column" value="11"/> <parameter key="create_id" value="true"/> <parameter key="id_column" value="2"/> </operator> <operator name="Normalize the Data" class="Normalization"> <parameter key="return_preprocessing_model" value="true"/> <parameter key="create_view" value="true"/> <parameter key="min" value="0.1"/> <parameter key="max" value="0.9"/> </operator> <operator name="DataStatistics" class="DataStatistics"> </operator> <operator name="Cross Validate" class="XValidation" expanded="yes"> <parameter key="keep_example_set" value="true"/> <parameter key="create_complete_model" value="true"/> <operator name="Train the SVM" class="LibSVMLearner"> <parameter key="keep_example_set" value="true"/> <parameter key="degree" value="5"/> <parameter key="gamma" value="0.8976"/> <parameter key="C" value="19.0"/> <list key="class_weights"> </list> <parameter key="calculate_confidences" value="true"/> </operator> <operator name="Test the SVM's Performance" class="OperatorChain" expanded="no"> <operator name="Apply the SVM to Test Data" class="ModelApplier"> <parameter key="keep_model" value="true"/> <list key="application_parameters"> </list> <parameter key="create_view" value="true"/> </operator> <operator name="Give Performance Stats" class="ClassificationPerformance"> <parameter key="keep_example_set" value="true"/> <parameter key="accuracy" value="true"/> <parameter key="weighted_mean_recall" value="true"/> <parameter key="weighted_mean_precision" value="true"/> <parameter key="correlation" value="true"/> <parameter key="margin" value="true"/> <parameter key="logistic_loss" value="true"/> <list key="class_weights"> </list> </operator> </operator> </operator> <operator name="ModelWriter" class="ModelWriter"> <parameter key="model_file" value="C:\Documents and Settings\ahanazi\Desktop\Testinf Rapid\myFirstModel\Model2\realModelFile\SVM ahmed model.mod"/> <parameter key="overwrite_existing_file" value="false"/> <parameter key="output_type" value="XML"/> </operator></operator>
<operator name="Root" class="Process" expanded="yes"> <operator name="ExampleSetGenerator" class="ExampleSetGenerator"> <parameter key="target_function" value="random"/> <parameter key="number_of_attributes" value="2"/> </operator> <operator name="For Leaner = 1 to 3" class="IteratingOperatorChain" expanded="yes"> <parameter key="iterations" value="3"/> <operator name="Set Learner Number" class="SingleMacroDefinition"> <parameter key="macro" value="Learner"/> <parameter key="value" value="%{a}"/> </operator> <operator name="Train and Test" class="XValidation" expanded="yes"> <parameter key="keep_example_set" value="true"/> <parameter key="sampling_type" value="shuffled sampling"/> <operator name="Create Model Using Learner Number" class="OperatorSelector" expanded="yes"> <operator name="1 Training" class="LibSVMLearner"> <parameter key="svm_type" value="epsilon-SVR"/> <parameter key="kernel_type" value="poly"/> <parameter key="C" value="1000.0"/> <list key="class_weights"> </list> </operator> <operator name="2 LinearRegression" class="LinearRegression"> </operator> <operator name="3 GPLearner" class="GPLearner"> </operator> </operator> <operator name="ApplierChain" class="OperatorChain" expanded="yes"> <operator name="Test" class="ModelApplier"> <list key="application_parameters"> </list> </operator> <operator name="Evaluation" class="RegressionPerformance"> <parameter key="root_mean_squared_error" value="true"/> <parameter key="absolute_error" value="true"/> <parameter key="relative_error" value="true"/> <parameter key="normalized_absolute_error" value="true"/> <parameter key="root_relative_squared_error" value="true"/> <parameter key="squared_error" value="true"/> <parameter key="correlation" value="true"/> </operator> </operator> </operator> <operator name="Map results to a table" class="ProcessLog"> <list key="log"> <parameter key="Learner" value="operator.Set Learner Number.value.macro_value"/> <parameter key="Performance" value="operator.Train and Test.value.performance"/> </list> </operator> </operator> <operator name="Cleanup and view results" class="IOConsumer"> <parameter key="io_object" value="ExampleSet"/> <parameter key="deletion_type" value="delete_one"/> </operator></operator>
<operator name="Root" class="Process" expanded="yes"> <operator name="ParameterIteration" class="ParameterIteration" expanded="yes"> <list key="parameters"> <parameter key="ExampleSetGenerator.local_random_seed" value="[1.0;5.0;5;linear]"/> <parameter key="Create Model Using Learner Number.select_which" value="[1.0;3.0;3;linear]"/> </list> <operator name="ExampleSetGenerator" class="ExampleSetGenerator"> <parameter key="target_function" value="random"/> <parameter key="number_of_attributes" value="2"/> <parameter key="local_random_seed" value="5"/> </operator> <operator name="Train and Test" class="XValidation" expanded="yes"> <parameter key="keep_example_set" value="true"/> <parameter key="sampling_type" value="shuffled sampling"/> <operator name="Create Model Using Learner Number" class="OperatorSelector" expanded="yes"> <parameter key="select_which" value="3"/> <operator name="1 Training" class="LibSVMLearner"> <parameter key="svm_type" value="epsilon-SVR"/> <parameter key="kernel_type" value="poly"/> <parameter key="C" value="1000.0"/> <list key="class_weights"> </list> </operator> <operator name="2 LinearRegression" class="LinearRegression"> </operator> <operator name="3 GPLearner" class="GPLearner"> </operator> </operator> <operator name="ApplierChain" class="OperatorChain" expanded="yes"> <operator name="Test" class="ModelApplier"> <list key="application_parameters"> </list> </operator> <operator name="Evaluation" class="RegressionPerformance"> <parameter key="root_mean_squared_error" value="true"/> <parameter key="absolute_error" value="true"/> <parameter key="relative_error" value="true"/> <parameter key="normalized_absolute_error" value="true"/> <parameter key="root_relative_squared_error" value="true"/> <parameter key="squared_error" value="true"/> <parameter key="correlation" value="true"/> </operator> </operator> </operator> <operator name="Map results to a table" class="ProcessLog"> <list key="log"> <parameter key="Seed" value="operator.ExampleSetGenerator.parameter.local_random_seed"/> <parameter key="Learner" value="operator.Create Model Using Learner Number.parameter.select_which"/> <parameter key="Performance" value="operator.Evaluation.value.absolute_error"/> </list> </operator> </operator> <operator name="Convert log for aggregation" class="ProcessLog2ExampleSet"> </operator> <operator name="Make model number nominal" class="AttributeSubsetPreprocessing" expanded="no"> <parameter key="condition_class" value="attribute_name_filter"/> <parameter key="attribute_name_regex" value="Learner"/> <operator name="Numerical2FormattedNominal" class="Numerical2FormattedNominal"> </operator> </operator> <operator name="Do stat by leaner" class="Aggregation"> <list key="aggregation_attributes"> <parameter key="Performance" value="average"/> <parameter key="Performance" value="variance"/> <parameter key="Performance" value="standard_deviation"/> </list> <parameter key="group_by_attributes" value="Learner"/> </operator></operator>
<operator name="Root" class="Process" expanded="yes"> <operator name="ParameterIteration" class="ParameterIteration" expanded="yes"> <list key="parameters"> <parameter key="ExampleSetGenerator.local_random_seed" value="[1.0;5.0;5;linear]"/> <parameter key="Create Model Using Learner Number.select_which" value="[1.0;3.0;3;linear]"/> </list> <operator name="ExampleSetGenerator" class="ExampleSetGenerator"> <parameter key="target_function" value="random"/> <parameter key="number_of_attributes" value="2"/> <parameter key="local_random_seed" value="5"/> </operator> <operator name="Train and Test" class="XValidation" expanded="yes"> <parameter key="keep_example_set" value="true"/> <parameter key="sampling_type" value="shuffled sampling"/> <operator name="Create Model Using Learner Number" class="OperatorSelector" expanded="yes"> <parameter key="select_which" value="3"/> <operator name="1 Training" class="LibSVMLearner"> <parameter key="svm_type" value="epsilon-SVR"/> <parameter key="kernel_type" value="poly"/> <parameter key="C" value="1000.0"/> <list key="class_weights"> </list> </operator> <operator name="2 LinearRegression" class="LinearRegression"> </operator> <operator name="3 GPLearner" class="GPLearner"> </operator> </operator> <operator name="ApplierChain" class="OperatorChain" expanded="yes"> <operator name="Test" class="ModelApplier"> <list key="application_parameters"> </list> </operator> <operator name="Evaluation" class="RegressionPerformance"> <parameter key="root_mean_squared_error" value="true"/> <parameter key="absolute_error" value="true"/> <parameter key="relative_error" value="true"/> <parameter key="normalized_absolute_error" value="true"/> <parameter key="root_relative_squared_error" value="true"/> <parameter key="squared_error" value="true"/> <parameter key="correlation" value="true"/> </operator> </operator> </operator> <operator name="Map results to a table" class="ProcessLog"> <list key="log"> <parameter key="Seed" value="operator.ExampleSetGenerator.parameter.local_random_seed"/> <parameter key="Learner" value="operator.Create Model Using Learner Number.parameter.select_which"/> <parameter key="Performance" value="operator.Evaluation.value.absolute_error"/> </list> </operator> </operator> <operator name="Convert log for aggregation" class="ProcessLog2ExampleSet"> </operator> <operator name="Make model number nominal" class="AttributeSubsetPreprocessing" expanded="yes"> <parameter key="condition_class" value="attribute_name_filter"/> <parameter key="attribute_name_regex" value="Learner"/> <operator name="Numerical2Polynominal" class="Numerical2Polynominal"> </operator> </operator> <operator name="Do stat by leaner" class="Aggregation"> <list key="aggregation_attributes"> <parameter key="Performance" value="average"/> <parameter key="Performance" value="variance"/> <parameter key="Performance" value="standard_deviation"/> </list> <parameter key="group_by_attributes" value="Learner"/> </operator></operator>