Comparing results of two classificators
Ola
New Altair Community Member
I'm just beginning to use RM and find that I like it a lot.
Most of the time I use mining for classification. How do I run, say a Logistic Regression and an SVM on the same dataset and compare the results? I know there is an ROCComparator, but what would the chain need to look like?
Most of the time I use mining for classification. How do I run, say a Logistic Regression and an SVM on the same dataset and compare the results? I know there is an ROCComparator, but what would the chain need to look like?
Tagged:
0
Answers
-
HI, and welcome to the RapidMiner refuge!
The answer to your question is like this ....<operator name="Root" class="Process" expanded="yes">
Pretty handy, so thanks for bringing it to our attention.
<parameter key="logverbosity" value="warning"/>
<parameter key="random_seed" value="2000"/>
<operator name="ExampleSetGenerator" class="ExampleSetGenerator">
<parameter key="target_function" value="random dots classification"/>
<parameter key="number_examples" value="500"/>
<parameter key="number_of_attributes" value="2"/>
<parameter key="attributes_lower_bound" value="0.0"/>
<parameter key="attributes_upper_bound" value="25.0"/>
</operator>
<operator name="ROCComparator" class="ROCComparator" expanded="yes">
<operator name="LibSVMLearner" class="LibSVMLearner">
<parameter key="gamma" value="1.0"/>
<list key="class_weights">
</list>
</operator>
<operator name="LinearRegression" class="LinearRegression">
</operator>
</operator>
</operator>
0 -
Thanks, that was brilliant.
Now I just need to combine this with cross validation and I'm set to go. Any thoughts on that?0 -
Hi again,
Here's some code to do that sort of stuff....<operator name="Root" class="Process" expanded="yes">
<parameter key="logverbosity" value="warning"/>
<parameter key="random_seed" value="2000"/>
<operator name="ExampleSetGenerator" class="ExampleSetGenerator">
<parameter key="target_function" value="random dots classification"/>
<parameter key="number_examples" value="500"/>
<parameter key="number_of_attributes" value="2"/>
<parameter key="attributes_lower_bound" value="0.0"/>
<parameter key="attributes_upper_bound" value="25.0"/>
</operator>
<operator name="XValidation" class="XValidation" expanded="no">
<parameter key="keep_example_set" value="true"/>
<parameter key="create_complete_model" value="true"/>
<parameter key="sampling_type" value="shuffled sampling"/>
<operator name="LibSVMLearner" class="LibSVMLearner">
<parameter key="keep_example_set" value="true"/>
<parameter key="gamma" value="1.0"/>
<list key="class_weights">
</list>
</operator>
<operator name="OperatorChain" class="OperatorChain" expanded="yes">
<operator name="ModelApplier" class="ModelApplier">
<list key="application_parameters">
</list>
</operator>
<operator name="Performance" class="Performance">
</operator>
</operator>
</operator>
<operator name="ModelWriter" class="ModelWriter">
<parameter key="model_file" value="SVM"/>
</operator>
<operator name="XValidation (2)" class="XValidation" expanded="no">
<parameter key="keep_example_set" value="true"/>
<parameter key="create_complete_model" value="true"/>
<parameter key="sampling_type" value="shuffled sampling"/>
<operator name="LinearRegression" class="LinearRegression">
</operator>
<operator name="OperatorChain (2)" class="OperatorChain" expanded="yes">
<operator name="ModelApplier (2)" class="ModelApplier">
<list key="application_parameters">
</list>
</operator>
<operator name="Performance (2)" class="Performance">
</operator>
</operator>
</operator>
<operator name="ModelWriter (2)" class="ModelWriter">
<parameter key="model_file" value="LR"/>
</operator>
<operator name="ROCComparator" class="ROCComparator" expanded="yes">
<operator name="SVM" class="ModelLoader">
<parameter key="model_file" value="SVM"/>
</operator>
<operator name="LR" class="ModelLoader">
<parameter key="model_file" value="LR"/>
</operator>
</operator>
</operator>
I've just bashed this together rather swiftly ( a big plus for RM ), and wiser heads than mine can do it much better, but you get the idea.
Have fun improving it!
0 -
Thank you! Very helpful.0