A program to recognize and reward our most engaged community members
<operator name="Root" class="Process" expanded="yes"> <operator name="ExampleSetGenerator" class="ExampleSetGenerator"> <parameter key="target_function" value="polynomial"/> <parameter key="number_of_attributes" value="6"/> <parameter key="attributes_lower_bound" value="1.0"/> </operator> <operator name="ChangeAttributeRole" class="ChangeAttributeRole"> <parameter key="name" value="att6"/> <parameter key="target_role" value="weight"/> </operator> <operator name="IOMultiplier" class="IOMultiplier"> <parameter key="io_object" value="ExampleSet"/> </operator> <operator name="LinearRegression" class="LinearRegression"> <parameter key="keep_example_set" value="true"/> <parameter key="feature_selection" value="none"/> <parameter key="eliminate_colinear_features" value="false"/> </operator> <operator name="ModelApplier" class="ModelApplier"> <parameter key="keep_model" value="true"/> <list key="application_parameters"> </list> </operator> <operator name="RegressionPerformance" class="RegressionPerformance" breakpoints="after"> <parameter key="keep_example_set" value="true"/> <parameter key="root_mean_squared_error" value="true"/> </operator> <operator name="W-LinearRegression" class="W-LinearRegression"> <parameter key="keep_example_set" value="true"/> <parameter key="S" value="1.0"/> <parameter key="C" value="true"/> </operator> <operator name="ModelApplier (2)" class="ModelApplier"> <parameter key="keep_model" value="true"/> <list key="application_parameters"> </list> </operator> <operator name="RegressionPerformance (2)" class="RegressionPerformance"> <parameter key="keep_example_set" value="true"/> <parameter key="root_mean_squared_error" value="true"/> </operator></operator>
<operator name="Root" class="Process" expanded="yes"> <operator name="ExampleSetGenerator" class="ExampleSetGenerator"> <parameter key="target_function" value="polynomial"/> <parameter key="number_of_attributes" value="6"/> <parameter key="attributes_lower_bound" value="1.0"/> </operator> <operator name="ChangeAttributeRole" class="ChangeAttributeRole"> <parameter key="name" value="att6"/> <parameter key="target_role" value="ignore"/> </operator> <operator name="IOMultiplier" class="IOMultiplier"> <parameter key="io_object" value="ExampleSet"/> </operator> <operator name="LinearRegression" class="LinearRegression"> <parameter key="keep_example_set" value="true"/> <parameter key="feature_selection" value="none"/> <parameter key="eliminate_colinear_features" value="false"/> </operator> <operator name="ModelApplier" class="ModelApplier"> <parameter key="keep_model" value="true"/> <list key="application_parameters"> </list> </operator> <operator name="RegressionPerformance" class="RegressionPerformance"> <parameter key="root_mean_squared_error" value="true"/> </operator> <operator name="IOStorer" class="IOStorer"> <parameter key="name" value="first_performance"/> <parameter key="io_object" value="PerformanceVector"/> </operator> <operator name="W-LinearRegression" class="W-LinearRegression"> <parameter key="keep_example_set" value="true"/> <parameter key="S" value="1.0"/> <parameter key="C" value="true"/> </operator> <operator name="ModelApplier (2)" class="ModelApplier"> <parameter key="keep_model" value="true"/> <list key="application_parameters"> </list> </operator> <operator name="RegressionPerformance (2)" class="RegressionPerformance"> <parameter key="root_mean_squared_error" value="true"/> </operator> <operator name="IORetriever" class="IORetriever"> <parameter key="name" value="first_performance"/> <parameter key="io_object" value="PerformanceVector"/> </operator></operator>
The differences in results intuitively seem too big to be explained by roundoff errors from different matrix calculations.