Community & Support
Learn
Marketplace
Discussions
Categories
Discussions
General
Platform
Academic
Partner
Regional
User Groups
Documentation
Events
Altair Exchange
Share or Download Projects
Resources
News & Instructions
Programs
YouTube
Employee Resources
This tab can be seen by employees only. Please do not share these resources externally.
Groups
Join a User Group
Support
Altair RISE
A program to recognize and reward our most engaged community members
Nominate Yourself Now!
Home
Discussions
Community Q&A
Negative class in polynomial labels? - Binary2MultiClassLearner
Schalkekid
Hi all,
I have the following problem (and I hope that I will describe it understandably):
I am processing a dataset containing polynomial labels including n-1 "positive" labeltypes and one negative (standard) label-type.
I am using the Binary2MultiClassLearner because the learner I use is a binary SVM.
The problem now exactly is, that the "negative" class dominates the dataset and the SVM just predicts the "negative" class .
For binominal labels it is possible to define the positive class. It would be nice if one could define the negative class for my problem, is this possible?
Thank you.
Best,
schalkekid
Find more posts tagged with
AI Studio
Accepted answers
All comments
haddock
Hi,
As you surmised, SVMs default to the most frequent label value when no separating pattern is found. You can try the EqualLabelWeighting operator, which beefs up the importance of examples with rare labels, or you can construct a new label attribute in which all the non-negative values are merged, and then bin the old label attribute. In the latter case you would use the AttributeConstruction operator, which is discussed below in this forum...
[url=
http://rapid-i.com/rapidforum/index.php/topic,580.0.html[/url]
, click to go there.
Quick Links
All Categories
Recent Discussions
Activity
Unanswered
日本語 (Japanese)
한국어(Korean)
Groups