I have 123 columns X 5,000 rows of financial time series data in an Excel Spreadsheet. I setup a genetic algorithm in preprocessing, then I setup a neural net for learning. I would like to forecast the data. I would alse like to setup self optimization. The data series correlates at times and at other times the data does not correlate. The correlation changes inside the series during the time series. Maybe it correlates for a few weeks to a few years, but then there are periods where the correlation is gone again for a few weeks to a few years. I would like to have the system optimize and adjust itself to these changes and locate and adjust to these patterns. I also only need to run this 1 time per day to forecast the next day's values. In the future, I would like to have it forecast out 4 weeks worth of data. Another goal is to have multiple versions of this system running combinations of different preprocessing and learning algorithms. Then, I would like to have the forecasts exported into an excel spreadsheet for comparison.
How can I set this up?
Thanks,
Amir
I have the following code so far:
<operator name="Root" class="Process" expanded="yes">
<operator name="ExcelExampleSource" class="ExcelExampleSource" breakpoints="after">
<parameter key="excel_file" value="C:\Users\Amir\Desktop\Rapid Miner\TIPredictTrade.xls"/>
<parameter key="first_row_as_names" value="true"/>
<parameter key="id_column" value="1"/>
<parameter key="label_column" value="12"/>
</operator>
<operator name="GeneticAlgorithm" class="GeneticAlgorithm" expanded="yes">
<parameter key="keep_best_individual" value="true"/>
<parameter key="maximum_number_of_generations" value="50"/>
<parameter key="min_number_of_attributes" value="5"/>
<parameter key="plot_generations" value="50"/>
<parameter key="population_size" value="21"/>
<parameter key="show_population_plotter" value="true"/>
<operator name="XValidation" class="XValidation" expanded="yes">
<parameter key="create_complete_model" value="true"/>
<parameter key="sampling_type" value="shuffled sampling"/>
<operator name="OperatorChain" class="OperatorChain" expanded="yes">
<operator name="NeuralNet" class="NeuralNet">
<parameter key="default_number_of_hidden_layers" value="3"/>
<list key="hidden_layer_types">
</list>
<parameter key="training_cycles" value="500"/>
</operator>
<operator name="ModelWriter" class="ModelWriter">
<parameter key="model_file" value="C:\Users\Amir\Documents\rm_workspace\DOWPredict.mod"/>
<parameter key="output_type" value="XML"/>
</operator>
</operator>
<operator name="OperatorChain (2)" class="OperatorChain" expanded="yes">
<operator name="ModelApplier" class="ModelApplier">
<list key="application_parameters">
</list>
<parameter key="create_view" value="true"/>
<parameter key="keep_model" value="true"/>
</operator>
<operator name="Performance" class="Performance">
</operator>
</operator>
</operator>
</operator>
</operator>