A program to recognize and reward our most engaged community members
<operator name="Root" class="Process" expanded="yes"> <operator name="ExampleSetGenerator" class="ExampleSetGenerator"> <parameter key="attributes_lower_bound" value="0.0"/> <parameter key="target_function" value="sum"/> </operator> <operator name="NoiseGenerator" class="NoiseGenerator"> <list key="noise"> </list> </operator> <operator name="Label2Regular" class="ChangeAttributeRole"> <parameter key="name" value="label"/> </operator> <operator name="Normalization" class="Normalization"> <parameter key="return_preprocessing_model" value="true"/> </operator> <operator name="Regular2Label" class="ChangeAttributeRole"> <parameter key="name" value="label"/> <parameter key="target_role" value="label"/> </operator> <operator name="LinearRegression" class="LinearRegression"> <parameter key="keep_example_set" value="true"/> </operator> <operator name="ModelApplier" class="ModelApplier"> <list key="application_parameters"> </list> </operator> <operator name="ChangeAttributeName" class="ChangeAttributeName"> <parameter key="new_name" value="pred"/> <parameter key="old_name" value="prediction(label)"/> </operator> <operator name="FeatureGeneration" class="FeatureGeneration"> <list key="functions"> <parameter key="mult_pred" value="*(pred,sqrt(const[47.175602123229964]()))"/> <parameter key="transformed_pred" value="+(mult_pred,const[24.811560028833878]())"/> </list> <parameter key="keep_all" value="true"/> </operator></operator>
Dear Ingo
Would it be OK to apply normalization only to the regular (predictor) attributes and not to the label (prediction)?
Regards
Ben
Hello @cyborghijacker -
Just FYI about the forum...if you want to call someone's attention, use the @ handle with the username. Very effective.
Scott
My wife considers me 'de-normalized!' yuk yuk yuk!
Why doesn't the "de-normalize" operator work for you in this case? You just need to feed the original normalize preprocessing model into it and it returns the invert model, which can then be applied to the normalized data and you should get the denormalized data back out.
I see, but I am still somewhat confused. Consider the process below to train a model and then to be used on new data. How to connect such that the new data is similar normalized using the normalization model obtained by the trained data, then the Deep Learning model applies on it to generate the prediction, followed by a de-normalize operator to get it back to its initial (unnormalized value)? I hope my process is sound though.
@sgenzer Thank you. I just used it!
Maybe this thread helps: http://community.rapidminer.com/t5/RapidMiner-Studio-Forum/Reverse-map-a-nominal-to-numerical-transform/m-p/39662