An exclusive raffle opportunity for active members like you! Complete your profile, answer questions and get your first accepted badge to enter the raffle.
<operator name="Root" class="Process" expanded="yes"> <operator name="ExampleSetGenerator" class="ExampleSetGenerator"> <parameter key="number_of_attributes" value="1"/> <parameter key="target_function" value="one variable non linear"/> </operator> <operator name="NoiseGenerator" class="NoiseGenerator"> <list key="noise"> </list> </operator> <operator name="LibSVMLearner" class="LibSVMLearner"> <parameter key="C" value="10000.0"/> <list key="class_weights"> </list> <parameter key="degree" value="2"/> <parameter key="keep_example_set" value="true"/> <parameter key="kernel_type" value="poly"/> <parameter key="svm_type" value="epsilon-SVR"/> </operator> <operator name="ModelApplier" class="ModelApplier"> <list key="application_parameters"> </list> </operator></operator>
<operator name="Root" class="Process" expanded="yes"> <operator name="DatabaseExampleSource" class="DatabaseExampleSource"> <parameter key="database_system" value="HSQLDB"/> <parameter key="database_url" value="jdbc:hsqldb:file:SnapshotDB"/> <parameter key="label_attribute" value="SNAPSHOT"/> <parameter key="query" value="SELECT SID, SNAPSHOT FROM snapshots"/> <parameter key="username" value="sa"/> </operator> <operator name="LibSVMLearner" class="LibSVMLearner"> <parameter key="C" value="10000.0"/> <list key="class_weights"> </list> <parameter key="kernel_type" value="poly"/> <parameter key="svm_type" value="epsilon-SVR"/> </operator> <operator name="ModelWriter" class="ModelWriter"> <parameter key="model_file" value="prediction.mod"/> </operator></operator>
... I always would try the RBF kernel with an optimized value for gamma / sigma.
<operator name="Root" class="Process" expanded="yes"> <operator name="ExampleSetGenerator" class="ExampleSetGenerator"> <parameter key="attributes_lower_bound" value="-20.0"/> <parameter key="attributes_upper_bound" value="15.0"/> <parameter key="number_examples" value="300"/> <parameter key="number_of_attributes" value="1"/> <parameter key="target_function" value="one variable non linear"/> </operator> <operator name="LibSVMLearner" class="LibSVMLearner"> <parameter key="C" value="2000.0"/> <list key="class_weights"> </list> <parameter key="gamma" value="1.0"/> <parameter key="keep_example_set" value="true"/> <parameter key="svm_type" value="epsilon-SVR"/> </operator> <operator name="ModelApplier" class="ModelApplier"> <list key="application_parameters"> </list> </operator></operator>