"Creating SVM learning sets"

Legacy User
Legacy User New Altair Community Member
edited November 2024 in Community Q&A
I think I initially put this message in the wrong category, so here it is again:
Hi,

I've been trying to apply SVM on a batch of textual documents in order to evaluate the performance of a model I developed as part of my thesis. First I used the 01_TextClassificationXVal.xml example found in the text plugin documentation. The XML of this example is brought here (I deleted some of the text processing operators - which are irrelevent to my question - in order to make it smaller):

<operator name="Root" class="Process" expanded="yes">
    <description text="#ylt#h3#ygt#Optimizing vector creation for text classification#ylt#/h3#ygt##ylt#p#ygt#This experiments shows how to apply a cross validation to a classifier that learns to separate two sets of texts.#ylt#/p#ygt#"/>
    <operator name="TextInput" class="TextInput" expanded="yes">
        <parameter key="create_text_visualizer"  value="true"/>
        <list key="namespaces">
        </list>
        <parameter key="prune_below"  value="3"/>
        <list key="texts">
          <parameter key="graphics"  value="../data/newsgroup/graphics"/>
          <parameter key="hardware"  value="../data/newsgroup/hardware"/>
        </list>
    </operator>
    <operator name="XValidation" class="XValidation" expanded="yes">
        <parameter key="leave_one_out"  value="true"/>
        <operator name="LibSVMLearner" class="LibSVMLearner">
            <list key="class_weights">
            </list>
            <parameter key="kernel_type"  value="linear"/>
            <parameter key="shrinking"  value="false"/>
        </operator>
        <operator name="OperatorChain" class="OperatorChain" expanded="yes">
            <operator name="ModelApplier" class="ModelApplier">
                <list key="application_parameters">
                </list>
            </operator>
            <operator name="BinominalClassificationPerformance" class="BinominalClassificationPerformance">
                <parameter key="AUC"  value="true"/>
                <parameter key="f_measure"  value="true"/>
            </operator>
        </operator>
    </operator>
</operator>

The problem I have with his example is that the smallest learning set I can use is half of the entire dataset (if I set the value of the cross validation to 2). I would like to use a tenth of the dataset for this purpose, as it is quite large. Is there an operator that can do that for me?

Thanks in advance,
Gil
Tagged:

Answers

  • land
    land New Altair Community Member
    Hi Gil,
    whats about sample your data? If I got you right, you don't want to use all your examples for learning. Perhabs you could a sampling algorithm for discarding that portion of data?

    Greetings,
      Sebastian
  • Legacy User
    Legacy User New Altair Community Member
    Hi Land,

    Thanks for answering so quicklly.

    You are right - I want to use only a small part of my set for learning, a much smaller part than what is offered by cross-validation. However, I don't know how to apply a sampling algorithm for a TextInput operator. Will it be possible for you (or anyone else, for that matter) to post an example how do do this?

    In an attemp to overcome this problem from a different direction, I wrote a java code that can go over all the documents of my dataset and randomly create subsets, which I intended to use as learning sets. I then wrote two simple experiments - one for creating a model based on the subsets I created, and another one that loads that model and applies it one the entore dataset.

    In order to make sure these two experiments function properly, I used half the dataset as the learning set (I thought this way I could compare my results to those pruduced by a 2-fold cross validation). Sadly, the results I got were much poorer than those produced by the cross-validation experiment - and I can't understand why that is the case. The XML of the two experiments is posted below - if I made a mistake, please help me understand what it is.

    If someone could help me solve even one of these two problems, I think it will be all I need.

    Thanks in advance,
    Gil

    The Two experiments:
    1) The learning phase - creating the SVM model:


    <?xml version="1.0" encoding="windows-1252"?>
    <process version="4.1">

      <operator name="Root" class="Process" expanded="yes">
              <operator name="TextInput" class="TextInput" expanded="no">
              <parameter key="create_text_visualizer" value="true"/>
              <list key="namespaces">
              </list>
              <parameter key="prune_below" value="3"/>
              <list key="texts">
                <parameter key="type1" value="D:\exp\type1_learnign_set"/>
                <parameter key="type2" value="D:\exp\type2_learnign_set"/>
              </list>
              <operator name="StringTokenizer" class="StringTokenizer">
              </operator>
              <operator name="EnglishStopwordFilter" class="EnglishStopwordFilter">
              </operator>
              <operator name="TokenLengthFilter" class="TokenLengthFilter">
                  <parameter key="min_chars" value="3"/>
              </operator>
              <operator name="PorterStemmer" class="PorterStemmer">
              </operator>
              <operator name="TermNGramGenerator" class="TermNGramGenerator">
              </operator>
          </operator>
          <operator name="LibSVMLearner" class="LibSVMLearner">
              <list key="class_weights">
              </list>
              <parameter key="kernel_type" value="linear"/>
          </operator>
          <operator name="ModelWriter" class="ModelWriter">
              <parameter key="model_file" value="C:\Documents and Settings\Admin\Desktop\SVM_Model.mod"/>
          </operator>
      </operator>

    </process>

    2) The test phase - applying the model

    <?xml version="1.0" encoding="windows-1252"?>
    <process version="4.1">

      <operator name="Root" class="Process" expanded="yes">
          <operator name="TextInput" class="TextInput" expanded="no">
              <parameter key="create_text_visualizer" value="true"/>
              <list key="namespaces">
              </list>
              <parameter key="prune_below" value="3"/>
              <list key="texts">
                <parameter key="type1" value="D:\exp\type1_full_set"/>
                <parameter key="type2" value="D:\exp\type2_full_set"/>
              </list>
              <operator name="StringTokenizer" class="StringTokenizer">
              </operator>
              <operator name="EnglishStopwordFilter" class="EnglishStopwordFilter">
              </operator>
              <operator name="TokenLengthFilter" class="TokenLengthFilter">
                  <parameter key="min_chars" value="3"/>
              </operator>
              <operator name="PorterStemmer" class="PorterStemmer">
              </operator>
              <operator name="TermNGramGenerator" class="TermNGramGenerator">
              </operator>
          </operator>
          <operator name="ModelLoader" class="ModelLoader">
              <parameter key="model_file" value="C:\Documents and Settings\Admin\Desktop\SVM_Model.mod"/>
          </operator>
          <operator name="ModelApplier" class="ModelApplier">
              <list key="application_parameters">
              </list>
          </operator>
          <operator name="BinominalClassificationPerformance" class="BinominalClassificationPerformance">
              <parameter key="AUC" value="true"/>
              <parameter key="f_measure" value="true"/>
          </operator>
      </operator>

    </process>


  • TobiasMalbrecht
    TobiasMalbrecht New Altair Community Member
    Hi Gil,

    well there is no direct and easy way to execute a cross validation but to use say only 10% of the examples for training and the other 90% for testing purposes. The easy-to-accomplish option you have is to simply use a sampling operator (e.g. [tt]StratifiedSampling[/tt]) before a cross validation. Therewith you may simply discard perhaps about 50% of your data and do a "normal" cross validation on the remaining 50%.

    Otherwise you can nearly simulate a kind of multiple validation by the following process:

    <operator name="Root" class="Process" expanded="yes">
        <operator name="NominalExampleSetGenerator" class="NominalExampleSetGenerator">
        </operator>
        <operator name="ParameterIteration" class="ParameterIteration" expanded="yes">
            <parameter key="keep_output" value="true"/>
            <list key="parameters">
              <parameter key="SimpleValidation.local_random_seed" value="1,2,3,4,5,6,7,8,9,10"/>
            </list>
            <operator name="SimpleValidation" class="SimpleValidation" expanded="yes">
                <parameter key="local_random_seed" value="10"/>
                <operator name="NaiveBayes" class="NaiveBayes">
                </operator>
                <operator name="OperatorChain" class="OperatorChain" expanded="yes">
                    <operator name="ModelApplier" class="ModelApplier">
                        <list key="application_parameters">
                        </list>
                    </operator>
                    <operator name="Performance" class="Performance">
                    </operator>
                </operator>
            </operator>
        </operator>
        <operator name="AverageBuilder" class="AverageBuilder">
        </operator>
    </operator>
    Note, however, that the examples are not partitioned in the iterations.

    Regards,
    Tobias