This operator evaluates the performance of feature weighting and selection algorithms. The first inner operator is the algorithm to be evaluated itself. It must return an attribute weights vector which is applied on the test data. This fold is used to create a new model using the second inner operator and retrieve a performance vector using the third inner operator. This performance vector serves as a performance indicator for the actual algorithm. This implementation of a MethodValidationChain works similar to the XValidation.
Operator 1 (Wrapper) must be able to handle [ExampleSet] and must deliver [AttributeWeights].Operator 2 (Training) must be able to handle [ExampleSet] and must deliver [Model].Operator 3 (Testing) must be able to handle [ExampleSet, Model] and must deliver [PerformanceVector].
<operator name="Root" class="Process" expanded="yes"> <operator name="DataGeneration" class="OperatorChain" expanded="yes"> <operator name="ExampleSetGenerator" class="ExampleSetGenerator"> <parameter key="number_examples" value="200"/> <parameter key="number_of_attributes" value="3"/> <parameter key="target_function" value="sum classification"/> </operator> <operator name="NoiseGenerator" class="NoiseGenerator"> <parameter key="label_noise" value="0.0"/> <list key="noise"> </list> <parameter key="random_attributes" value="3"/> </operator> <operator name="Normalization" class="Normalization"> <parameter key="z_transform" value="false"/> </operator> </operator> <operator name="WrapperXValidation" class="WrapperXValidation" expanded="yes"> <parameter key="number_of_validations" value="5"/> <operator name="EvolutionaryWeighting" class="EvolutionaryWeighting" expanded="yes"> <parameter key="maximum_number_of_generations" value="20"/> <parameter key="p_crossover" value="0.5"/> <parameter key="population_size" value="2"/> <operator name="XValidation" class="XValidation" expanded="yes"> <parameter key="number_of_validations" value="5"/> <operator name="WeightLearner" class="NearestNeighbors"> <parameter key="k" value="5"/> </operator> <operator name="OperatorChain" class="OperatorChain" expanded="yes"> <operator name="ModelApplier" class="ModelApplier"> <list key="application_parameters"> </list> </operator> <operator name="Performance" class="Performance"> </operator> </operator> </operator> </operator> <operator name="WeightedModelLearner" class="NearestNeighbors"> <parameter key="k" value="5"/> </operator> <operator name="WeightedApplierChain" class="OperatorChain" expanded="yes"> <operator name="WeightedModelApplier" class="ModelApplier"> <list key="application_parameters"> </list> </operator> <operator name="WeightedPerformance" class="Performance"> </operator> </operator> </operator></operator>
att1 0.9181578856281039att3 0.8079093341177875att2 0.5669022824248217random1 0.4395652799419607random2 0.25727249709958755random 0.047672333763268744