An exclusive raffle opportunity for active members like you! Complete your profile, answer questions and get your first accepted badge to enter the raffle.
<operator name="Root" class="Process" expanded="yes"> <operator name="Trainingsdaten einlesen" class="ExampleSource"> </operator> <operator name="Herausfiltern von Feature A" class="FeatureNameFilter"> <parameter key="skip_features_with_name" value="A"/> </operator> <operator name="Feature AdvRatios herausfiltern" class="FeatureNameFilter"> <parameter key="filter_special_features" value="true"/> <parameter key="skip_features_with_name" value="AdvRatios"/> </operator> <operator name="Kreuzvalidierung" class="XValidation" expanded="yes"> <parameter key="create_complete_model" value="true"/> <parameter key="keep_example_set" value="true"/> <parameter key="leave_one_out" value="true"/> <operator name="Modell lernen" class="OperatorChain" expanded="yes"> <operator name="Bagging" class="Bagging" expanded="yes"> <operator name="DecisionTree" class="DecisionTree"> </operator> </operator> <operator name="ModelWriter" class="ModelWriter"> <parameter key="model_file" value="model_%{a}.mod"/> <parameter key="output_type" value="XML"/> </operator> </operator> <operator name="Modell testen und bewerten" class="OperatorChain" expanded="yes"> <operator name="ModelApplier" class="ModelApplier"> <list key="application_parameters"> </list> </operator> <operator name="Bewertung des Modells" class="ClassificationPerformance"> <list key="class_weights"> </list> <parameter key="classification_error" value="true"/> <parameter key="correlation" value="true"/> <parameter key="keep_example_set" value="true"/> </operator> </operator> </operator> <operator name="Testdaten vorbereiten" class="OperatorChain" expanded="yes"> <operator name="Testdaten einlesen" class="ExampleSource"> </operator> <operator name="Herausfiltern von Feature A (2)" class="FeatureNameFilter"> <parameter key="skip_features_with_name" value="A"/> </operator> <operator name="Feature AdvRatios herausfiltern (2)" class="FeatureNameFilter"> <parameter key="filter_special_features" value="true"/> <parameter key="skip_features_with_name" value="AdvRatios"/> </operator> </operator> <operator name="IteratingOperatorChain" class="IteratingOperatorChain" expanded="yes"> <parameter key="iterations" value="10"/> <operator name="ModelLoader" class="ModelLoader"> <parameter key="model_file" value="model_%{a}.mod"/> </operator> <operator name="ModelApplier (2)" class="ModelApplier"> <list key="application_parameters"> </list> <parameter key="keep_model" value="true"/> </operator> <operator name="Klassifikationssicherheit Test-/Trainingsdaten" class="ClassificationPerformance"> <parameter key="accuracy" value="true"/> <list key="class_weights"> </list> <parameter key="classification_error" value="true"/> <parameter key="kappa" value="true"/> <parameter key="keep_example_set" value="true"/> </operator> </operator></operator>
Using the IteratingOperatorChain is agood idea, but I still have problems with the ModelApplier. I thought if I set the iteration value to ten the ModelApplier will calculate ten predictions by using ten different models derived by Bagging.